[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-3-030-92185-9_40guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Ego Networks

Published: 08 December 2021 Publication History

Abstract

Games on the Atari 2600 platform have served as a benchmark for reinforcement learning algorithms in recent years, and while deep reinforcement learning approaches make progress on most games, there are still some games that the majority of these algorithms struggle with. These are called hard exploration games. We introduce two new developments for the Random Network Distillation (RND) architecture. We apply self-attention and the mechanism of ego motion on the RND architecture and we evaluate them on three hard exploration tasks from the Atari platform. We find that the proposed ego network model improve the baseline of the RND architecture on these tasks.

References

[1]
Aytar, Y., Pfaff, T., Budden, D., Paine, T., Wang, Z., de Freitas, N.: Playing hard exploration games by watching YouTube. In: NeurIPS (2018)
[2]
Badia, A.P., et al.: Agent57: outperforming the Atari human benchmark. ArXiv abs/2003.13350 (2020)
[3]
Badia, A.P., et al.: Never give up: learning directed exploration strategies. ArXiv abs/2002.06038 (2020)
[4]
Bellemare MG, Naddaf Y, Veness J, and Bowling M The arcade learning environment: an evaluation platform for general agents (extended abstract) J. Artif. Intell. Res. 2013 47 253-279
[5]
Bellemare, M.G., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., Munos, R.: Unifying count-based exploration and intrinsic motivation. ArXiv abs/1606.01868 (2016)
[6]
Bello, I., Zoph, B., Vaswani, A., Shlens, J., Le, Q.V.: Attention Augmented Convolutional Networks. arXiv e-prints arXiv:1904.09925, April 2019
[7]
Burda, Y., Edwards, H., Storkey, A.J., Klimov, O.: Exploration by random network distillation. CoRR abs/1810.12894 (2018). http://arxiv.org/abs/1810.12894
[8]
Burda, Y., Edwards, H.A., Pathak, D., Storkey, A.J., Darrell, T., Efros, A.A.: Large-scale study of curiosity-driven learning. ArXiv abs/1808.04355 (2019)
[9]
Choi, J., Lee, B., Zhang, B.: Multi-focus attention network for efficient deep reinforcement learning. ArXiv abs/1712.04603 (2017)
[10]
Choi, J., et al.: Contingency-aware exploration in reinforcement learning. ArXiv abs/1811.01483 (2019)
[11]
Haber, N., Mrowca, D., Fei-Fei, L., Yamins, D.L.K.: Emergence of structured behaviors from curiosity-based intrinsic motivation. CoRR abs/1802.07461 (2018). http://arxiv.org/abs/1802.07461
[12]
Horgan, D., et al.: Distributed prioritized experience replay. ArXiv abs/1803.00933 (2018)
[13]
Kapturowski, S., Ostrovski, G., Dabney, W., Quan, J., Munos, R.: Recurrent experience replay in distributed reinforcement learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=r1lyTjAqYX
[14]
Martin, J., Sasikumar, S.N., Everitt, T., Hutter, M.: Count-based exploration in feature space for reinforcement learning. In: IJCAI (2017)
[15]
Mott, A., Zoran, D., Chrzanowski, M., Wierstra, D., Rezende, D.J.: Towards interpretable reinforcement learning using attention augmented agents. In: NeurIPS (2019)
[16]
Ostrovski, G., Bellemare, M.G., Oord, A., Munos, R.: Count-based exploration with neural density models. ArXiv abs/1703.01310 (2017)
[17]
Ostrovski, G., Bellemare, M.G., van den Oord, A., Munos, R.: Count-based exploration with neural density models. ArXiv abs/1703.01310 (2017)
[18]
Schrittwieser, J., et al.: Mastering Atari, go, chess and shogi by planning with a learned model. ArXiv abs/1911.08265 (2019)
[19]
Sorokin, I., Seleznev, A., Pavlov, M., Fedorov, A., Ignateva, A.: Deep attention recurrent Q-network. ArXiv abs/1512.01693 (2015)
[20]
Tang, H., et al.: Exploration: a study of count-based exploration for deep reinforcement learning. In: NIPS (2017)
[21]
Tang, Y., Nguyen, D., Ha, D.: Neuroevolution of self-interpretable agents. In: Proceedings of the 2020 Genetic and Evolutionary Computation Conference (2020)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Neural Information Processing: 28th International Conference, ICONIP 2021, Sanur, Bali, Indonesia, December 8–12, 2021, Proceedings, Part I
Dec 2021
718 pages
ISBN:978-3-030-92184-2
DOI:10.1007/978-3-030-92185-9

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 08 December 2021

Author Tags

  1. Deep reinforcement learning
  2. Ego networks
  3. Self-attention
  4. Hard exploration
  5. Atari

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 25 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media