[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/978-981-97-5606-3_33guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Domain-Knowledge Enhanced GANs for High-Quality Trajectory Generation

Published: 05 August 2024 Publication History

Abstract

Realistically simulating human mobility and generating high-quality trajectories are essential for location-based applications like epidemic analysis, traffic management, and location privacy. Current trajectory generation techniques that are free of models usually learn knowledge directly from real mobility data. However, they encounter challenges in generating high-quality trajectories due to the unpredictable transition patterns and intricate periodicity regularities inherent in human movement. Furthermore, model-free techniques rely heavily on autoregressive paradigms, which are susceptible to issue such as error accumulation. In order to address these challenges, we propose Domain-Knowledge Enhanced Generative Adversarial Network (DKE-GAN), a model-free approach that integrates domain knowledge of human mobility with model-free learning paradigm to generate high-quality human mobility data. Additionally, we tackle the error accumulation issue by integrating reinforcement learning into the discrimination stage. The discriminator here gradually supplies augmented feedback, incorporating sequence generation, mobility regularity awareness, and mobility yaw rewards, to offer comprehensive guidance for enhancing the generator’s performance. Extensive experiments conducted on two real-world mobility datasets show that our framework outperforms five state-of-the-art baselines, significantly improving the simulation of human mobility data.

References

[1]
Luca M, Barlacchi G, Lepri B, and Pappalardo L A survey on deep learning for human mobility ACM Comput. Surv. (CSUR) 2021 55 1 1-44
[2]
Wang, J., Jiang, J., Jiang, W., Li, C., Zhao, W.X.: LibCity: an open library for traffic prediction. In: Proceedings of the 29th International Conference on Advances in Geographic Information Systems, pp. 145–148 (2021)
[3]
Pellungrini R, Pappalardo L, Pratesi F, and Monreale A A data mining approach to assess privacy risk in human mobility data ACM Trans. Intell. Syst. Technol. (TIST) 2017 9 3 1-27
[4]
Jiang, S., Yang, Y., Gupta, S., Veneziano, D., Athavale, S., González, M.C.: The TimeGeo modeling framework for urban mobility without travel surveys. Proc. Natl. Acad. Sci. 113(37), E5370–E5378 (2016)
[5]
Song, C., Koren, T., Wang, P., Barabási, A.L.: Modelling the scaling properties of human mobility. Nat. Phys. 6(10), 818–823 (2010)
[6]
Yin D and Yang Q Gans based density distribution privacy-preservation on mobility data Secur. Commun. Netw. 2018 2018 1-13
[7]
Ouyang, K., Shokri, R., Rosenblum, D.S., Yang, W.: A nonparametric generative model for human trajectories. IJCAI 18, 3812–3817 (2018)
[8]
Feng, J., et al.: DeepMove: predicting human mobility with attentional recurrent networks. In: Proceedings of the 2018 World Wide Web Conference, pp. 1459–1468 (2018)
[9]
Li, Z., Ding, B., Han, J., Kays, R., Nye, P.: Mining periodic behaviors for moving objects. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1099–1108 (2010)
[10]
Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.L.: Understanding individual human mobility patterns. Nature 453(7196), 779–782 (2008)
[11]
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
[12]
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
[13]
Yu, L., Zhang, W., Wang, J., Yu, Y.: SeqGAN: sequence generative adversarial nets with policy gradient. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1 (2017)
[14]
Keogh E and Ratanamahatana CA Exact indexing of dynamic time warping Knowl. Inf. Syst. 2005 7 358-386
[15]
Song, C., Qu, Z., Blumm, N., Barabási, A.L.: Limits of predictability in human mobility. Science 327(5968), 1018–1021 (2010)
[16]
Zheng Y, Fu H, Xie X, Ma WY, and Li Q Geolife gps trajectory dataset-user guide Geolife GPS Traject. 2011 1 2011
[17]
Yang C and Gidofalvi G Fast map matching, an algorithm integrating hidden markov model with precomputation Int. J. Geogr. Inf. Sci. 2018 32 3 547-570
[18]
Huang, D., et al.: A variational autoencoder based generative model of urban human mobility. In: 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 425–430. IEEE (2019)
[19]
Feng, J., Yang, Z., Xu, F., Yu, H., Wang, M., Li, Y.: Learning to simulate human mobility. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3426–3433 (2020)
[20]
Wang X, Liu X, Lu Z, and Yang H Large scale gps trajectory generation using map based on two stage gan J. Data Sci. 2021 19 1 126-141
[21]
Cao C., Li, M.: Generating mobility trajectories with retained data utility. In: Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2610–2620 (2021)
[22]
Brockmann D, Hufnagel L, and Geisel T The scaling laws of human travel Nature 2006 439 7075 462-465
[23]
Simini, F., Gonzalez, M.C., Maritan, A., Barabási, A.L.: A universal model for mobility and migration patterns. Nature 484(7392), 96–100 (2012)
[24]
Chen, L., Özsu, M.T., Oria, V.: Robust and fast similarity search for moving object trajectories. In: Proceedings of the 2005 ACM SIGMOD International Conference on Management of Data, pp. 491–502 (2005)
[25]
Xie D, Li F, and Phillips JM Distributed trajectory similarity search Proc. VLDB Endow. 2017 10 11 1478-1489

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
Advanced Intelligent Computing Technology and Applications: 20th International Conference, ICIC 2024, Tianjin, China, August 5–8, 2024, Proceedings, Part IX
Aug 2024
510 pages
ISBN:978-981-97-5605-6
DOI:10.1007/978-981-97-5606-3
  • Editors:
  • De-Shuang Huang,
  • Wei Chen,
  • Jiayang Guo

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 05 August 2024

Author Tags

  1. Trajectory Generation
  2. Domain-Knowledge Enhanced
  3. GAN
  4. Reinforcement Learning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media