[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.1007/11561071_23guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Predecessor queries in constant time?

Published: 03 October 2005 Publication History

Abstract

In this paper we design a new static data structure for batched predecessor queries. In particular, our data structure supports $O(\sqrt{{\rm log}n})$ queries in O(1) time per query and requires $O(n^{\epsilon\sqrt{{\rm log}n}})$ space for any ε > 0. This is the first o(N) space and O(1) amortized time data structure for arbitrary $N = \Omega(n^{\epsilon\sqrt{{\rm log}n}})$ where N is the size of the universe. We also present a data structure that answers O(log log N) predecessor queries in O(1) time per query and requires $O(n^{\epsilon{\rm log log} {\it N}})$ space for any ε > 0. The method of solution relies on a certain way of searching for predecessors of all elements of the query in parallel.
In a general case, our approach leads to a data structure that supports p(n) queries in $O(\sqrt{{\rm log} n}/p(n))$ time per query and requires O(n$^{p({\it n})}$) space for any $p(n) =O(\sqrt{{\rm log}n})$, and a data structure that supports p(N) queries in O(log log N/p(N)) time per query and requires O(n$^{p({\it N})}$) space for any p(N)=O(log log N).

References

[1]
G. M. Adelson-Velskii, E.M. Landis, An algorithm for the organization of information, Dokladi Akademii Nauk SSSR, 146(2):1259-1262, 1962.
[2]
M. Ajtai, M. L. Fredman, J. Komlòs, Hash Functions for Priority Queues, Information and Control 63(3): 217-225 (1984).
[3]
S. Alstrup, G. S. Brodal, T. Rauhe, Optimal static range reporting in one dimension, STOC 2001, pp. 476-482.
[4]
A. Andersson, Sublogarithmic Searching without Multiplications, FOCS 1995, pp. 655-663.
[5]
A. Andersson, Faster Deterministic Sorting and Searching in Linear Space, FOCS 1996, pp. 135-141.
[6]
A. Andersson, T. Hagerup, S. Nilsson, R. Raman, Sorting in linear time? STOC 1995, pp. 427-436.
[7]
A. Andersson, M. Thorup, Tight(er) worst-case bounds on dynamic searching and priority queues, STOC 2000, pp. 335-342.
[8]
A. Andersson, M. Thorup, Dynamic Ordered Sets with Exponential Search Trees, The Computing Research Repository (CoRR), cs.DS/0210006: (2002). Available at http://arxiv.org/abs/cs.DS/0210006.
[9]
P. Beame, F. E. Fich, Optimal Bounds for the Predecessor Problem and Related Problems, J. Comput. Syst. Sci. 65(1): 38-72 (2002).
[10]
A. Brodnik, S. Carlsson, J. Karlsson, J. I. Munro, Worst case constant time priority queue, SODA 2001, pp. 523-528.
[11]
L. Carter, M. N. Wegman, Universal Classes of Hash Functions. J. Comput. Syst. Sci. 18(2): 143-154 (1979).
[12]
P. van Emde Boas, Preserving Order in a Forest in Less Than Logarithmic Time and Linear Space, Inf. Process. Lett. 6(3): 80-82 (1977).
[13]
P. van Emde Boas, R. Kaas, E. Zijlstra, Design and Implementation of an Efficient Priority Queue, Mathematical Systems Theory 10: 99-127 (1977).
[14]
M. L. Fredman, D. E. Willard, Trans-Dichotomous Algorithms for Minimum Spanning Trees and Shortest Paths, J. Comput. Syst. Sci. 48(3): 533-551 (1994).
[15]
T. Hagerup, Sorting and Searching on the Word RAM, STACS 1998, pp. 366-398.
[16]
Y. Han, Deterministic sorting in O(n log log n) time and linear space, STOC 2002, pp. 602-608.
[17]
B. Gum, R. Lipton, Cheaper by the Dozen: Batched Algorithms. 1st SIAM International Conference on Data Mining, 2001. Available at http://www.math.grin.edu/gum/papers/batched/
[18]
K. Mehlhorn, Data Structures and Algorithms 1: Sorting and Searching, Springer 1984.
[19]
W. J. Paul, S. Simon, Decision Trees and Random Access Machines, International Symposium on Logik and Algorithmic, Zürich, pp 331-340, 1980.
[20]
D. E. Willard, Log-Logarithmic Worst-Case Range Queries are Possible in Space Theta(N), Inf. Process. Lett. 17(2): 81-84 (1983).
[21]
D. E. Willard, New Trie Data Structures Which Support Very Fast Search Operations, J. Comput. Syst. Sci. 28(3): 379-394 (1984).
[22]
A. C.-C. Yao Should Tables Be Sorted?, J. ACM 28(3): 615-628 (1981).

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ESA'05: Proceedings of the 13th annual European conference on Algorithms
October 2005
901 pages
ISBN:3540291180
  • Editors:
  • Gerth Stølting Brodal,
  • Stefano Leonardi

Sponsors

  • Ministerio de Educación y Ciencia: Ministerio de Educación y Ciencia
  • Universitat de les Illes Balears: Universitat de les Illes Balears
  • EATCS: European Association for Theoretical Computer Science
  • Universitat Politècnica de Catalunya: Universitat Politècnica de Catalunya

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 03 October 2005

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Feb 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media