[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Spatial functional normal mixed effect approach for curve classification

Published: 01 September 2014 Publication History

Abstract

This paper proposes a spatial functional formulation of the normal mixed effect model for the statistical classification of spatially dependent Gaussian curves, in both parametric and state space model frameworks. Fixed effect parameters are represented in terms of a functional multiple regression model whose regression operators can change in space. Local spatial homogeneity of these operators is measured in terms of their Hilbert---Schmidt distances, leading to the classification of fixed effect curves in different groups. Assuming that the Gaussian random effect curves obey a spatial autoregressive dynamics of order one [SARH(1) dynamics], a second functional classification criterion is proposed in order to detect local spatially homogeneous patterns in the mean quadratic functional variation of Gaussian random effect curve increments. Finally, the two criteria are combined to detect local spatially homogeneous patterns in the regression operators and in the functional mean quadratic variation, under a state space approach. A real data example in the financial context is analyzed as an illustration.

References

[1]
Abraham C, Cornillon PA, Matzner-Løber E, Molinari N (2003) Unsupervised curve clustering using B-splines. Scand J Stat 30:581-595.
[2]
Aach J, Church GM (2001) Alignment gene expression time series with time warping algorithms. Bioinformatics 17:495-508.
[3]
Aguilera AM, Escabias M, Preda C, Saporta G (2010) Using basis expansion for estimating functional PLS regression. Applications with chemometric data. Chemom Intel Lab Syst 104:289-305.
[4]
Aguilera-Morillo MC, Aguilera AM, Escabias M, Valderrama MJ (2013) Penalized spline approaches for functional logit regression. TEST 22:251-277.
[5]
Alonso AM, Casado D, Romo J (2012) Supervised classification for functional data: a weighted distance approach. Comput Stat Data Anal 56:2334-2346.
[6]
Angelini C, De Canditiis D, Leblanc F (2003) Wavelet regression estimation in nonparametric mixed effect models. J Multivar Anal 85:267-291.
[7]
Baíllo A, Cuevas A (2008) Supervised classification for functional data: a theoretical remark and some numerical comparisons. In: Dabo-Niang S, Ferraty F (eds) Functional and operatorial statistics. Physica-Verlag, Heidelberg, pp 43-46.
[8]
Baladandayuthapani V, Mallick B, Hong M, Lupton J, Turner N, Caroll R (2008) Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinoginesis. Biometrics 64: 64-73.
[9]
Basse M, Diop A, Dabo-Niang S (2008) Mean square properties of a class of kernel density estimates for spatial functional random variables. Annales De L'I.S.U.P. Publications de l'Institut de Statistique de l'Université de Paris.
[10]
Berlinet A, Biau G, Rouviére L (2008) Functional supervised classification with wavelets. Ann lISUP 52:61-80.
[11]
Biau G, Bunea F, Wegkamp MH (2003) Functional classification in Hilbert spaces. IEEE Trans Inf Theor 1:1-8.
[12]
Booth L, Aivazian V, Demirguç-Kunt L, Maksimovic V (2001) Capital structures in developing countries. J Fin 56:87-130.
[13]
Cuesta-Albertos JA, Fraiman R (2007) Impartial trimmed k-means for functional data. Comput Stat Data Anal 51:4864-4877.
[14]
Chiou J-M, Li P-L (2007) Functional clustering and identifying substructures of longitudinal data. J R Stat Soc Ser B 69:679-699.
[15]
Chiou J-M, Li P-L (2008a) Correlation-based functional clustering via subspace projection. J Am Stat Assoc 103:1684-1692.
[16]
Chiou J-M, Li P-L (2008b) Functional clustering of longitudinal data. In: Dabo-Niang S, Ferraty F (eds) Functional and operatorial statistics. Physica-Verlag, Heidelberg, pp 103-107.
[17]
Daubechies I (1992) Ten lectures on wavelets. SIAM, Philadelphia.
[18]
Dautray R, Lions JL (1985) Mathematical analysis and numerical. Methods for science and technology. Spectral theory and applications, vol 3. Springer, New York.
[19]
Delaigle A, Hall P (2012a) Achieving near perfect classification for functional data. J R Stat Soc Ser B 74:267-286.
[20]
Delaigle A, Hall P (2012b) Methodology and theory for partial least squares applied to functional data. Ann Stat 40:322-352.
[21]
Delaigle A, Hall P, Bathia N (2012) Componentwise classification and clustering of functional data. Biometrika 99:299-313.
[22]
Degryse H, De Goeij P, Kappert K (2012) The impact of firm and industry characteristics on small firms' capital structure. Small Bus Econ 38:431-447.
[23]
Delicado P, Giraldo R, Comas C, Mateu J (2010) Statistics for spatial functional data: some recent contributions. Environmetrics 21:224-239.
[24]
Donoho DL (1993) Unconditional bases are optimal bases for data compression and for statistical estimation. J Appl Comput Harmon Anal 1:100-115.
[25]
Escabias M, Aguilera AM, Valderrama MJ (2004) Principal component estimation of functional logistic regression: discussion of two different approaches. J Nonparametr Stat 16:365-384.
[26]
Escabias M, Aguilera AM, Valderrama MJ (2007) Functional PLS logit regression model. Computat Stat Data Anal 51:4891-4902.
[27]
Ferraty F, Vieu P (2003) Curves discrimination: a nonparametric functional approach. Comput Stat Data Anal 44:161-173.
[28]
Ferraty F, Vieu P (2006) Nonparametric functional data analysis. Springer, New York.
[29]
Ferraty F, Vieu P (2009) Additive prediction and boosting for functional data. Comput Stat Data Anal 53:1400-1413.
[30]
Friedman NA (1970) Introduction to ergodic theory. Van Nostrand Reinhold mathematical studies, No 29. Van Nostrand Reinhold Co., New York.
[31]
Fujikoshi Y, Satoh K (1997) Modified AIC and Cp inmultivariate linear regression. Biometrika 84:707-716.
[32]
Giacofci M, Lambert-Lacroix S, Marot G, Picard F (2013) Wavelet-based clustering for mixed-effects functional models in high dimensions. Biometrics 69:31-40.
[33]
Giraldo R, Delicado P, Comas C, Mateu J (2010) Hierarchical clustering of spatially correlated functional data. Statistica Neerlandica.
[34]
Giraldo R, Delicado P, Mateu J (2010b) Continuous time-varying kriging for spatial prediction of functional data: an environmental application. J Agric Biol Environ Stat 15:66-82.
[35]
Guillas S, Lai MJ (2010) Bivariate splines for spatial functional regression models. J R Stat Soc Ser B 22:477-497.
[36]
Hall P, Poskitt D, Presnell B (2001) A functional data-analytic approach to signal discrimination. Technometrics 43:1-9.
[37]
Harten A (1993) Discrete multiresolution analysis and generalized wavelets. J Appl Numer Math 12: 153-193.
[38]
James GM, Hastie TJ (2001) Functional linear discriminant analysis for irregular sampled curves. J R Stat Soc Ser B 63:533-550.
[39]
James GM, Sugar CA (2003) Clustering for sparsely sampled functional data. J Am Stat Soc 98:397-408.
[40]
Kumar BVR, Mehra M (2005) Wavelet based preconditioners for sparse linear systems. Appl Math Comput 171:203-224.
[41]
Leng X, Müller HG (2006) Time ordering of gene coexpression. Biostatistics 7:569-584.
[42]
Li PL, Chiou JM (2011) Identifying cluster number for subspace projected functional data clustering original. Comput Stat Data Anal 55:2090-2103.
[43]
Liu XL, Müller HG (2003) Modes and clustering for time-warped gene expression profile data. Bioinformatics 19:1937-1944.
[44]
Li B, Yu Q (2008) Classification of functional data: a segmentation approach. Comput Stat Data Anal 52:4790-4800.
[45]
López-Pintado S, Romo J (2006) Depth-based classification for functional data. In: Liu R, Serfling R, Souvaine DL (eds) Data depth: robust multivariate analysis, computational geometry and applications. DIMACS series, vol 72, pp 103-121.
[46]
Monestiez P, Nerini D (2008) A cokriging method for spatial functional data with applications in oceanology. Functional and operational statistics. Contrib Stat 36:237-242.
[47]
Müller HG, Stadtmüller U (2005) Generalized functional linear models. Ann Stat 33:774-805.
[48]
Nerini D, Monestiez P, Manté C (2010) Cokriging for spatial functional data. J Multivar Anal 101:409-418.
[49]
Nerini D, Ghattas B (2007) Classifying densities using functional regression trees: applications in oceanology. Comput Stat Data Anal 51:4984-4993
[50]
Preda C, Saporta G (2005a) Clusterwise PLS regression on a stochastic process. Comput Stat Data Anal 49:991-2008.
[51]
Preda C, Saporta G (2005b) PLS regression on a stochastic process. Comput Stat Data Anal 48:149-158.
[52]
Ramsay JO, Silverman BW (2005) Functional data analysis, 2nd edn. Springer, New York.
[53]
Rincón M, Ruiz-Medina MD (2012) Local wavelet-vaguelette-based functional classification of gene expression data. Biometr J 54:75-93.
[54]
Romano E, Balzanella A, Verde R (2010) Clustering spatio-functional data: amodel-based approach. Studies in classification, data analysis, and knowledge organization. Springer, New York.
[55]
Romano E, Verde R (2011) Clustering geostatistical functional data. In: Di Ciaccio A, Coli M, Angulo JM (eds) Advanced statistical methods for the analysis of large data-sets. Studies in theoretical and applied statistics. Springer, Berlin, pp 23-31.
[56]
Romano E, Balzanella A, Verde R (2013) A regionalization method for spatial functional data based on variogram models: an application on environmental data. In: Advances in theoretical and applied statistics, Springer, Berlin, Heidelberg.
[57]
Rossi F, Villa N (2006) Support vector machine for functional data classification. Neurocomputing 69:730- 742.
[58]
Ruiz-Medina MD (2011) Spatial autoregressive and moving average Hilbertian processes. J Multivar Anal 102:292-305.
[59]
Ruiz-Medina MD (2012a) Spatial functional prediction from spatial autoregressive Hilbertian processes. Environmetrics 23:119-128.
[60]
Ruiz-Medina MD, Anh VV, Espejo RM, Frías MP (2013) Heterogeneous spatial dynamical regression in a Hilbert-valued context. Stoch Anal Appl 31:509-527.
[61]
Ruiz-Medina MD, Espejo RM (2012b) Spatial autoregressive functional plug-in prediction of ocean surface temperature. Stoch Environ Res Risk A 26:335-344.
[62]
Schölkopf B, Smola A (2002) Learning with kernels. MIT Press, Cambridge.
[63]
Spitzner D, Marron JS, Essick GK (2002) Mixed-model functional ANOVA for studying human tactile perception. Behav Brain Res 135:43-49.
[64]
Stein ML (1999) Interpolation of spatial data: some theory for kriging. Springer, New York.
[65]
Stein ML (2009) Spatial interpolation of high-frequency monitoring data. Ann Appl Stat 3:272-291.
[66]
Tarpey T, Kinateder KKJ (2003) Clustering functional data. J Classif 20:93-114.
[67]
Yang JY, Peng ZL, Yu Z, Zhang RJ, Anh V, Wang D (2009a) Prediction of protein structural classes by recurrence quantification analysis based on chaos game representation. J Theor Biol 257:618-626.
[68]
Yang JY, Yu Z, Anh V (2009b) Clustering structures of large proteins using multifractal analyses based on a 6-letter model and hydrophobicity scale of amino acids. Chaos Solitons Fractals 40:607-620.
[69]
Zhang Z, Müller HG (2011) Functional density synchronization. Comput Stat Data Anal 55:2234-2249.

Cited By

View all
  • (2024)Supervised learning via ensembles of diverse functional representations: the functional voting classifierStatistics and Computing10.1007/s11222-024-10503-834:6Online publication date: 28-Sep-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Advances in Data Analysis and Classification
Advances in Data Analysis and Classification  Volume 8, Issue 3
September 2014
126 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2014

Author Tags

  1. 62H30
  2. Empirical functional variogram
  3. Firm financial structure
  4. Functional multiple regression
  5. Spatial Hilbert-valued Gaussian processes
  6. Spatial functional mixed effect models

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Supervised learning via ensembles of diverse functional representations: the functional voting classifierStatistics and Computing10.1007/s11222-024-10503-834:6Online publication date: 28-Sep-2024

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media