[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Performance of uncoordinated coexistence mechanisms in adhoc networks

Published: 01 April 2018 Publication History

Abstract

Dynamic spectrum sharing between uncoordinated devices is impaired by interference. Simple coexistence mechanism can reduce this interference and improve network performance. We analyze performance of some simple coexistence mechanisms in detail, where the decision to transmit a packet by a given device to its intended receiver is taken solely by the transmitter receiver pair without any central control. Accurate interference models are developed assuming a large number of transmitter-receiver pairs that are randomly distributed according to a Poisson spatial point process. These are used to derive accurate expressions for packet error rates in the case of direct sequence code division multiple access physical layer model and slotted packet transmission schemes. These results are then used to study the performance of the coexistence mechanisms and compare them with each other.

References

[1]
Gao, B., Jung-Min, Park, Yang, Y., & Roy, S. (2012). A taxonomy of coexistence mechanisms for heterogeneous cognitive radio networks operating in TV white spaces. IEEE Wireless Communications, 19(4), 41---48.
[2]
Cacciapuoti, A., Caleffi, M., & Paura, L. (2015). Optimal strategy design for enabling the coexistence of heterogeneous networks in TV white space. IEEE Transactions on Vehicular Technology, 99, 1.
[3]
Karn, P. (1990). MACA: A new channel access method for packet radio. Proceedings of IEEE Computer Networking Conference (pp. 134---140).
[4]
Garcia-Luna-Aceves, J.J., & Fullmer, C.L., (1998). Performance of floor acquisition multiple access in ad-hoc networks. Proceedings of IEEE ISCC (pp. 63---68).
[5]
Hasan, A., & Andrews, J. G. (2007). The guard zone in wireless ad hoc networks. IEEE Transactions on Wireless Communications, 6(3), 897---906.
[6]
Menon, R., Buehrer, R.M., & Reed, J.H. (2006). Impact of exclusion region and spreading in spectrum-sharing ad hoc networks. Proceedings of 1st International Workshop on Technology and Policy for Accessing Spectrum. ACM (no.7).
[7]
Baccelli, F., Blaszczyszyn, B., & Muhlethaler, P. (2009). Stochastic analysis of spatial and opportunistic aloha. IEEE Journal on Selected Areas in Communications, 27(7), 1105---1119.
[8]
Pursley, M. B. (1987). The role of spread spectrum in packet radio networks. Proceedings of the IEEE, 75(1), 116---134.
[9]
Weber, S. P., Yang, X., Andrews, J. G., & de Veciana, G. (2005). Transmission capacity of wireless ad hoc networks with outage constraints. IEEE Transactions on Information Theory, 51(12), 4091---4102.
[10]
Qi, Q., Milstein, L. B., & Vaman, D.R. (2008). Cognitive radio based multi-user resource allocation in mobile ad hoc networks using multi-carrier CDMA modulation. IEEE Journal on Selected Areas in Communications, 26(1), 70---82.
[11]
Sengupta, S., Chatterjee, M., & Kwiat, K. A. (2010). A game theoretic framework for power control in wireless sensor networks. IEEE Transactions on Computers, 26(1), 70---82.
[12]
Pompili, D., Melodia, T., & Akyildiz, I. F. (2010). A CDMA-based medium access control for underwater acoustic sensor networks. IEEE Transactions on Wireless Communications, 8(4), 1899---1909.
[13]
De, S., Qiao, C., Pados, D. A., Chatterjee, M., & Philip, S. J. (2004). An integrated cross-layer study of wireless CDMA sensor networks. IEEE Journal on Selected Areas in Communications, 8(4), 1899---1909.
[14]
Chakravarthy, V., Li, X., Wu, Z., Temple, M., Garber, F., Kannan, R., et al. (2009). Novel overlay/underlay cognitive radio waveforms using SD-SMSE framework to enhance spectrum efficiency-part I: Theoretical framework and analysis in AWGN channel. IEEE Transactions on Communications, 57(12), 3794---3804.
[15]
Attar, A., Nakhai, M. R., & Aghvami, A. H. (2008). Cognitive radio transmission based on direct sequence. MC-CDMA IEEE Transactions Wireless Communications, 7(4), 1157---1162.
[16]
Morrow, R. K, Jr., & Lehnert, J. S. (1989). Bit-to-bit error dependence in slotted DS/SSMA packet systems with random signature sequences. IEEE Transactions on Communications, 37(10), 1052---1061.
[17]
Morrow, R. K, Jr., & Lehnert, J. S. (1992). Packet throughput in slotted ALOHA DS/SSMA radio systems with random signature sequences. IEEE Transactions on Communications, 40(7), 1223---1230.
[18]
Sousa, E. S. (1990). Interference modeling in a direct-sequence spread-spectrum packet radio network. IEEE Transactions on Communications, 38(9), 1475---1482.
[19]
Cheng, J., & Beaulieu, N. C. (2002). Accurate DS-CDMA bit-error probability calculation in Rayleigh fading. IEEE Transactions on Wireless Communications, 1(1), 3---15.
[20]
Hamdi, K. A. (2007). Accurate DS-CDMA packet-error rate analysis in Rayleigh fading. IEEE Transactions on Communications, 55(3), 551---562.
[21]
Sousa, E. S. (1992). Performance of a spread spectrum packet radio network link in a Poisson field of interferers. IEEE Transactions on Information Theory, 38(6), 1743---1754.
[22]
ElSawy, H., & Hossain, E. (2013). A modified hard core point process for analysis of random CSMA wireless networks in general fading environments. IEEE Transactions on Communications, 61(4), 1520---1534.
[23]
Sousa, E. S., & Silvester, J. A. (1990). Optimum transmission ranges in a direct-sequence spread-spectrum multihop packet radio network. IEEE Journal on Selected Areas in Communications, 8(5), 762---771.
[24]
Kaynia, M., Jindal, N., & Oien, G. E. (2011). Improving the performance of wireless ad hoc networks through MAC layer design. IEEE Transactions on Wireless Communications, 10(1), 240---252.
[25]
Pinto, P. C., Giorgetti, A., Win, M. Z., & Chiani, M. (2009). A stochastic geometry approach to coexistence in heterogeneous wireless networks. IEEE Journal on Selected Areas in Communications, 27(7), 1268---1282.
[26]
Ao, W. C., & Chen, K. C. (2012). Bounds and exact mean node degree and node isolation probability in interference-limited wireless ad hoc networks with general fading. IEEE Transactions on Vehicular Technologies, 61(5), 2342---2348.
[27]
Win, M. Z., Pinto, P. C., & Shepp, L. A. (2009). A mathematical theory of network interference and its applications. Proceedings of the IEEE, 97(2), 205---230.
[28]
Ganti, R. K., Baccelli, F., & Andrews, J. G. (2012). Series expansion for interference in wireless networks. IEEE Transactions on Information Theory, 58(4), 2194---2205.
[29]
Ahmed, J., & Hamdi, K.A. (2010). On the coexistence of uncoordinated ad-hoc networks. Proceedings of IEEE GLOBECOM (pp. 1---5).
[30]
Gupta, P., & Kumar, P. R. (2000). The capacity of wireless networks. IEEE Transactions on Information Theory, 46(2), 388---404.
[31]
Hasan, A., & Andrews, J.G. (2004). The critical radius in CDMA ad hoc networks. Proceedings of IEEE GLOBECOM (pp. 3568---3572).
[32]
Xuemin, H., Wang, C.-X., & Thompson, J. (2008). Interference modeling of cognitive radio networks. Proceedings of IEEE VTC (pp. 1851---1855).
[33]
Abramowitz, M., & Stegun, I. A. (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables (9th ed.). New York: Dover Publications.
[34]
Bharghavan, V., Demers, A., Shenker, S., & Zhang, L. (1994). MACAW: A media access protocol for wireless LAN's. Proceedings of the Conference on Communication, Architectures, Protocols and Applications (pp. 212---225).
[35]
Lehnert, J., & Pursley, M. (1987). Error probabilities for binary direct-sequence spread-spectrum communications with random signature sequences. Proceedings of IEEE VTC, 35(1), 87---98.
[36]
Barry, D. A., Culligan-Hensley, P. J., & Barry, S. J. (1995). Real values of the W-function. ACM Transactions on Mathematical Software, 21(2), 161---171.
[37]
Stoyan, D., Kendall, W. S., & Mecke, J. (1995). Stochastic geometry and its applications (2nd ed.). London: Wiley.

Cited By

View all
  • (2021)Effect of Node Mobility on MU-MIMO Transmissions in Mobile Ad Hoc NetworksWireless Communications & Mobile Computing10.1155/2021/99549402021Online publication date: 1-Jan-2021

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Telecommunications Systems
Telecommunications Systems  Volume 67, Issue 4
April 2018
234 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 April 2018

Author Tags

  1. Adhoc networks
  2. CDMA
  3. Coexistence
  4. Mobile interference
  5. Poisson point process

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 03 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Effect of Node Mobility on MU-MIMO Transmissions in Mobile Ad Hoc NetworksWireless Communications & Mobile Computing10.1155/2021/99549402021Online publication date: 1-Jan-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media