[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Ranked content advertising in online social networks

Published: 01 May 2015 Publication History

Abstract

Online social networks (OSNs) such as Twitter, Digg and Facebook have become popular. Users post news, photos and videos, etc. and followers of such users then view and comment the posted information. In general, we call the users who produce the information as the information producers, and the users who view the information as the information consumers. The recently popular targeted information advertising systems enable the producers to target users (i.e., consumers). A key problem of the advertising system is to efficiently find the top-k most desirable targeted users, who next will view the advertised information and perform potential e-commerce activities. Unfortunately, state-of-the-art solutions to find the top-k desirable targeted users in large OSNs incur high space cost and slow running time. In this paper, we focus on designing efficient algorithms to overcome such efficiency issues. Experimental results, over synthetic and real data sets, demonstrate the effectiveness and efficiency of our algorithms.

References

[1]
Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734---749 (2005)
[2]
Ahuja, R.K., Mehlhorn, K., Orlin, J.B., Tarjan, R.E.: Faster algorithms for the shortest path problem. J. ACM 37(2), 213---223 (1990)
[3]
Amer-Yahia, S., Benedikt, M., Lakshmanan, L.V.S., Stoyanovich, J.: Efficient network aware search in collaborative tagging sites. PVLDB 1(1), 710---721 (2008)
[4]
Atazky, R., Barone, E.: Advertising and Incentives Over a Social Network, Aug. 30. US Patent App. 11/512,595 (2006)
[5]
Bartolini, I., Zhang, Z., Papadias, D.: Collaborative filtering with personalized skylines. IEEE Trans. Knowl. Data Eng. 23(2), 190---203 (2011)
[6]
Cao, P., Wang, Z.: Efficient top-k query calculation in distributed networks. In: PODC, pp. 206---215 (2004)
[7]
Chiang, M.-F., Peng, W.-C., Yu, P.S.: Exploring latent browsing graph for question answering recommendation. World Wide Web 15(5---6), 603---630 (2012)
[8]
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269---271 (1959)
[9]
Eppstein, D., Wang, J.Y.: A steady state model for graph power laws. In: 2nd International Workshop Web Dynamics (2002)
[10]
Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci. 66(4), 614---656 (2003)
[11]
Ferman, A.M., Errico, J.H., van Beek, P., Sezan, M.I.: Content-based filtering and personalization using structured metadata. In: JCDL, p. 393 (2002)
[12]
Goldberg, A.V., Harrelson, C.: Computing the shortest path: a search meets graph theory. In: SODA, pp. 156---165 (2005)
[13]
Hadija, Z., Barnes, S.B., Hair, N.: Why we ignore social networking advertising. Qual. Mark. Res. Int. J. 15(1), 19---32 (2012)
[14]
Herlocker, J.L., Konstan, J.A., Borchers, A., Riedl, J.: An algorithmic framework for performing collaborative filtering. In: SIGIR, pp. 230---237 (1999)
[15]
Holzer, M., Schulz, F., Wagner, D.: Engineering multilevel overlay graphs for shortest-path queries. In: ACM Journal of Experimental Algorithmics, p. 13 (2008)
[16]
Ilyas, I.F., Beskales, G., Soliman, M.A.: A survey of top- query processing techniques in relational database systems. ACM Comput. Surv. 40(4) (2008)
[17]
Machanavajjhala, A., Vee, E., Garofalakis, M.N., Shanmugasundaram, J.: Scalable ranked publish/subscribe. PVLDB 1(1), 451---462 (2008)
[18]
Michel, S., Triantafillou, P., Weikum, G.: Klee: a framework for distributed top-k query algorithms. In: VLDB, pp. 637---648 (2005)
[19]
O'Madadhain, J., Fisher, D., White, S., Boey, Y.-B.: JUNG: The Java Universal Network/Graph Framework. http://jung.sourceforge.net
[20]
Roy, A., Nilakant, K., Dalibard, V., Yoneki, E.: Mitigating i/o latency in ssd-based graph traversal. In: University of Cambridge, Computer Laboratory, Technical report (UCAM-CL-TR-823) (2012)
[21]
Sadoghi, M., Jacobsen, H.-A.: Be-tree: an index structure to efficiently match boolean expressions over high-dimensional discrete space. In: SIGMOD Conference, pp. 637---648 (2011)
[22]
Schenkel, R., Crecelius, T., Kacimi, M., Michel, S., Neumann, T., Parreira, J.X., Weikum, G.: Efficient top-k querying over social-tagging networks. In: SIGIR, pp. 523---530 (2008)
[23]
Singla, P., Richardson, M.: Yes, there is a correlation: from social networks to personal behavior on the web. In: WWW, pp. 655---664 (2008)
[24]
Theobald, M., Weikum, G., Schenkel, R.: Top-k query evaluation with probabilistic guarantees. In: VLDB, pp. 648---659 (2004)
[25]
Thorup, M.: Undirected single-source shortest paths with positive integer weights in linear time. J. ACM 46(3), 362---394 (1999)
[26]
Ukkonen, A., Castillo, C., Donato, D., Gionis, A.: Searching the Wikipedia with contextual information. In: CIKM, pp. 1351---1352 (2008)
[27]
Vieira, M.V., Fonseca, B.M., Damazio, R., Golgher, P.B., de Castro Reis, D., Ribeiro-Neto, B.A.: Efficient search ranking in social networks. In: CIKM, pp. 563---572 (2007)
[28]
Whang, S., Brower, C., Shanmugasundaram, J., Vassilvitskii, S., Vee, E., Yerneni, R., Garcia-Molina, H.: Indexing boolean expressions. PVLDB 2(1), 37---48 (2009)
[29]
Wu, J., Chen, L., YU, Q., Han, P., Wu, Z.: Trust-aware media recommendation in heterogeneous social networks. In: World Wide Web, pp. 1---19 (2013)
[30]
Yahoo! advertising targeting options. http://advertising.yahoo.com/central/marketing/targeting.html
[31]
Yang, W.-S., Dia, J.-B.: Discovering cohesive subgroups from social networks for targeted advertising. Expert Syst. Appl. 34(3), 2029---2038 (2008)
[32]
Yang, W.-S., Dia, J.-B., Cheng, H.-C., Lin, H.-T.: Mining social networks for targeted advertising. In: HICSS (2006)
[33]
Yoneki, E., Roy, A.: Scale-up graph processing: a storage-centric view. In: First International Workshop on Graph Data Management Experiences and Systems, GRADES '13, pp. 8:1---8:6. ACM, New York (2013)
[34]
Zhu, Y.: Measurement and analysis of an online content voting network: a case study of digg. In: WWW 2010, pp 1039---1048 (2010)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image World Wide Web
World Wide Web  Volume 18, Issue 3
May 2015
268 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 May 2015

Author Tags

  1. Efficiency
  2. Shortest path distance
  3. Top-k query

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 01 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media