[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Rate-optimal fair power allocation in complex field network coded relay communications

Published: 01 May 2016 Publication History

Abstract

In this paper, we consider the complex field network coded relay assisted communication (CFNC-RAC) channel. Although CFNC-RAC is spectrally efficient, its bit error rate performance is degraded by multi-access interference, which can be improved by appropriately allocating the user and relay powers. Since the fairness is an important factor for a practical multi-user communication system, we have proposed a rate-optimal fair power adaptation (ROFPA) technique in this work. The proposed ROFPA policy not only aims to maximize the average achievable sum-rate of CFNC-RAC under the use of the decode and forward relaying but also intends to satisfy the average rate-fairness restriction while taking the total power constraint and the network topology into account. We formulate the ROFPA as a non-convex optimization program and then derive an analytical solution for it. Extensive performance evaluation and numerical simulations validate that ROFPA method can provide significant sum-rate with considerable user fairness when compared to symbol-error-rate optimized (SER-OPT) policy proposed by Eritmen et al. (Wirel Netw, 2015. doi:10.1007/s11276-015-0924-1).

References

[1]
Goldsmith, A. (2005). Wireless communications (1st ed.). Cambridge UK: Cambridge University Press.
[2]
Tse, D., & Viswanath, P. (2005). Fundamentals of wireless communication (1st ed.). Cambridge UK: Cambridge University Press.
[3]
Cover, T. M., & Gamal, A. E. (1979). Capacity theorems for the relay channel. IEEE Transactions on Information Theory,25(5), 572---584.
[4]
Host-Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory,51(6), 2020---2040.
[5]
Ahlswede, R., Cai, N., Li, S. Y. R., & Yeung, R. W. (2000). Network information flow. IEEE Transactions on Information Theory,46(4), 1204---1216.
[6]
Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: efficient protocols and outage behavior. IEEE Transactions on Information Theory,50(12), 3062---3080.
[7]
Hasna, M. O., & Alouini, M. S. (2003). End-to-end performance of transmission systems with relays over Rayleigh fading channels. IEEE Transactions on Wireless Communications,2(6), 1126---1131.
[8]
Anghel, P. A., & Kaveh, M. (2004). Exact symbol error probability of a cooperative network in a Rayleigh-fading environment. IEEE Transactions on Wireless Communications,3(5), 1416---1421.
[9]
Ikki, S., & Ahmed, M. H. (2007). Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel. IEEE Communications Letters,11(4), 334---336.
[10]
Beaulieu, N. C., & Hu, J. (2006). A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. IEEE Communications Letters,10(12), 813---815.
[11]
Li, Y., Vucetic, B., Zhou, Z., & Dohler, M. (2007). Distributed adaptive power allocation for wireless relay networks. IEEE Transactions on Wireless Communications,6(3), 948---958.
[12]
Chen, M., Serbetli, S., & Yener, A. (2008). Distributed power allocation for parallel relay networks. IEEE Transactions on Wireless Communications,7(2), 552---561.
[13]
Deng, X., & Haimovich, A. M. (2005). Power allocation for cooperative relaying in wireless networks. IEEE Communications Letters,9(11), 994---996.
[14]
Madsen, A. H., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory,51(6), 2020---2040.
[15]
Liang, Y., & Veeravalli, V. (2005). Gaussian orthogonal relay channel: optimal resource allocation and capacity. IEEE Transactions on Information Theory,51(9), 3284---3289.
[16]
Zhao, Y., Adve, R. S., & Lim, T. J. (2007). Improving amplify-and-forward relay networks: optimal power allocation versus selection. IEEE Transactions on Wireless Communications,6(8), 3114---3123.
[17]
Chen, Y., Kishore, S., Li, J. (2006). Wireless diversity through network coding. In Proceedings of wireless communication networking conference, vol. 3, pp. 1681---1686.
[18]
Katti, S., Rahul, H., Hu, W., Katabi, D., Médard, M., & Crowcroft, J. (2006). XORs in the air: Practical wireless network coding. In Proceedings ACMSIGCOMM, Pisa, Italy, pp. 243---254.
[19]
Li, S. Y. R., Yeung, R. W., & Cai, N. (2003). Linear network coding. IEEE Transactions on Information Theory,49(2), 371---381.
[20]
Zhang, S., & Liew, S. C. (2009). Channel coding and decoding in a relay system operated with physical layer network coding. IEEE Journal on Selected Areas in Communications,27(5), 788---796.
[21]
Zhang, S., Liew, S. C., & Lam, P. P. (2006). Hot topic: Physical layer network coding for the two-way relay channels. In Proceedings of 12th MobiCom, Los Angeles, CA, USA, pp. 358---365.
[22]
Wang, T., & Giannakis, G. B. (2008). Complex field network coding for multiuser cooperative communications. IEEE Journal on Selected Areas in Communications,26(3), 561---571.
[23]
Eritmen, K., & Keskinoz, M. (2015). Symbol-error rate optimized complex field network coding for wireless communications. Wireless Networks.
[24]
Guo, Z., Wang, B., Xie, P., Zeng, W., & Cui, J. (2009). Efficient error recovery with network coding in underwater sensor networks. Ad Hoc Networks,7(4), 791---802.
[25]
Bhat, U., & Duman, T. M. (2012). Decoding strategies at the relay with physical-layer network coding. IEEE Transactions on Wireless Communications,11(12), 4503---4513.
[26]
Liew, S. C., Zhang, S., & Lu, L. (2013). Physical-layer network coding: Tutorial, survey, and beyond. Physical Commun.,6, 4---42.
[27]
Lu, L., Wang, T., Liew, S. C., & Zhang, S. (2013). Implementation of physical-layer network coding. Physical Communications,6, 74---87.
[28]
Mohammed, A. H., Dai, B., Huang, B., Azhar, M., Xu, G., Qin, P., & Yu, S. (2013). A survey and tutorial of wireless relay network protocols based on network coding. Journal of Network and Computer Applications,36(2), 593---610.
[29]
Mazumdar, R., Mason, L., & Douligeris, C. (1991). Fairness in the network optimal flow control: Optimality of product forms. IEEE Transactions on Communications,39(5), 775---782.
[30]
Bertsekas, D., & Gallager, R. (1992). Data networks (2nd ed.). Upper Saddle River, NJ: Prentice Hall Inc.
[31]
Kelly, F. P., Maulloo, A. K., & Tan, D. K. H. (1998). Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of Operational Research Society,49(3), 237---252.
[32]
Lee, J. & Jindal, N. (2006). Symmetric capacity of MIMO downlink channels. In Proceedings of ISIT 2006, Seattle USA, pp. 1031-1035, .
[33]
Zaidi, A. A., Khormuji, M. N., Yao, S., & Skoglund, M. (2009) Optimized analog network coding strategies for the white Gaussian multiple-access relay channel. IEEE ITW, Taormina, Italy, pp. 460---464.
[34]
Wang, S., Song, Q., Wang, X., & Jamalipour, A. (2011). Rate and power adaptation for analog network coding. IEEE Transactions on Vehicular Technology,60(5), 2302---2313.
[35]
Dhaka, K., Mallik, R. K., & Schober, R. (2011) Performance analysis of a multi-hop communication system with decode-and-forward relaying. In Proceedings of IEEE International Conference on Communications, pp. 1---6.
[36]
Farhadi, G., & Beaulieu, N. (2009). On the ergodic capacity of multi-hop wireless relaying systems. IEEE Transaction on Wireless Communications,8(5), 2286---2291.
[37]
Nosratinia, A., Hunter, T. E., & Hedayat, A. (2004). Cooperative communication in wireless networks. IEEE Communications Magazine,42(10), 74---80.
[38]
Akyildiz, I. F., Estevez, D. M. G., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-Advanced. Physical Communication,3(4), 217---244.
[39]
Boyd, S., & Vandenberghe, I. (2004). Convex optimization (1st ed.). Cambridge, UK: Cambridge University Press.
  1. Rate-optimal fair power allocation in complex field network coded relay communications

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image Wireless Networks
        Wireless Networks  Volume 22, Issue 4
        May 2016
        336 pages

        Publisher

        Springer-Verlag

        Berlin, Heidelberg

        Publication History

        Published: 01 May 2016

        Author Tags

        1. Average rate-fairness
        2. Complex field network coding
        3. Decode-and-forward relaying
        4. Power allocation
        5. Relay communication

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • 0
          Total Citations
        • 0
          Total Downloads
        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Dec 2024

        Other Metrics

        Citations

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media