[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Pedestrian Navigation Based on Inertial Sensors, Indoor Map, and WLAN Signals

Published: 01 June 2013 Publication History

Abstract

As satellite signals, e.g. GPS, are severely degraded indoors or not available at all, other methods are needed for indoor positioning. In this paper, we propose methods for combining information from inertial sensors, indoor map, and WLAN signals for pedestrian indoor navigation. We present results of field tests where complementary extended Kalman filter was used to fuse together WLAN signal strengths and signals of an inertial sensor unit including one gyro and three-axis accelerometer. A particle filter was used to combine the inertial data with map information. The results show that both the map information and WLAN signals can be used to improve the pedestrian dead reckoning estimate based on inertial sensors. The results with different combinations of the available sensor information are compared.

References

[1]
Levi, R.W., & Judd, T. (1996). Dead reckoning navigational system using accelerometer to measure foot impacts. United States Patent No. 5,583,776.
[2]
Judd, T. (1997). A personal dead reckoning module. In Proc. ION GPS 97, Kansas City, MO, USA, 16-19 September (pp. 47-51).
[3]
Ladetto, Q. (2001). On foot navigation: continuous step calibration using both complementary recursive prediction and adaptive Kalman filtering. In Proc. ION GPS 2000, Salt Lake City, UT, USA, 19-22 September (pp. 1735-1740).
[4]
Fang, L., Antsaklis, P.J., Montestruque, L.A., McMickell, M.B., Lemmon, M., Hui Fang, T.S., Koutroulis, I., Haenggi, M., Xie, M., Xie, X. (2005). Design of a wireless assisted pedestrian dead reckoning system--the NavMote experience. IEEE Transactions on Instrumentation and Measurement, 54(6), 2342-2358.
[5]
Bahl, P., & Padmanabhan, V.N. (2000). Radar: an in-building rf-based user location and tracking system. In: Proc. IEEE INFOCOM 2000 (Vol. 2, pp. 775-785).
[6]
Kotanen, A., Hännikäinen, A., Leppäkoski, H. Hämäläinen, T. (2003). Experiments on local positioning with bluetooth. In Proc. ITCC 2003 (pp. 297-303). IEEE Computer Society.
[7]
Youssef, M.A., Agrawala, A., Udaya Shankar, A. (2003). WLAN location determination via clustering and probability distributions. In Proc. IEEE PerCom 2003 (pp. 143-150).
[8]
Quddus, M.A., Ochieng, W.Y., Noland, R.B. (2007). Current map-matching algorithms for transport applications: state-of-the art and future research directions. Transportation Research Part C, 15(5), 312-328.
[9]
Evennou, F., Marx, F., Novakov, E. (2005) Map-aided indoor mobile positioning system using particle filter. In Proc. IEEE 2005 wireless communications and networking conference (Vol. 4, pp. 79-84).
[10]
Wang, H., Lenz, H., Szabo, A., Bamberger, J., Hanebeck, U.D. (2007). WLAN-based pedestrian tracking using particle filters and low-cost MEMS sensors. In Proc. WPNC'2007, Hannover, Germany (pp. 1-7).
[11]
Widyawan, Klepal, M., Beauregard, S. (2008). A novel backtracking particle filter for pattern matching indoor localization. In MELT '08: Proceedings of the first ACM international workshop on mobile entity localization and tracking in GPS-less environments, New York, NY, USA (pp. 79-84).
[12]
Woodman, O., & Harle, R. (2009). RF-based initialisation for inertial pedestrian tracking. In Pervasive '09: Proc. the 7th international conference on pervasive computing, Nara, Japan (pp. 238-255). Springer.
[13]
Leppäkoski, H, Collin, J., Takala, J. (2012). Pedestrian navigation based on inertial sensors, indoor map, and WLAN signals. In Proc. ICASSP 2012, Kyoto, Japan, 25-30 March (pp. 1569-1572).
[14]
Brown, R.G., & Hwang, P.Y.C. (1997). Introduction to random signals and applied kalman filtering (3rd ed.). Wiley.
[15]
Brown, R.G. (1972). Integrated navigation systems and Kalman filtering: a perspective. NAVIGATION, Journal of The Institute of Navigation, 19(4), 355-362.
[16]
Qi, H., & Moore, J.B. (2002). Direct Kalman filtering approach for GPS/INS integration. IEEE Transactions on Aerospace and Electronic Systems, 38(2), 687-693.
[17]
Yang, Y., Farrell, J., Barth, M. (2000). High-accuracy, high-frequency differential carrier phase GPS aided low-cost INS. In Proc. of the IEEE PLANS, San Diego, CA, USA (pp. 148-155).
[18]
Gabaglio, V. (2001). Centralised Kalman filter for augmented gps pedestrian navigation. In Proc. ION GPS 2001, Salt Lake City, Utah, USA (pp. 312-318).
[19]
Frank, K., Krach, B., Catterall, N., Robertson, P. (2009). Development and evaluation of a combined WLAN & inertial indoor pedestrian positioning system. In Proc. ION GNSS 2009, Savannah, Georgia, USA (pp. 538-546).
[20]
Leppäkoski, H., & Takala, J. (2007). Analysis of complementary Kalman filter configurations for navigation systems. In Proc. ENC-GNSS'07, Geneva, Switzerland, 29-31 May (pp. 1365-1376).
[21]
Candy, J.V. (2009). Bayesian signal processing: Classical, modern, and particle f iltering methods. Wiley.
[22]
Elwell, J. (1999). Inertial navigation for the urban warrior. In Proc. SPIE conference on digitalization of the battlespace IV, Orlando, Florida, USA (pp. 196-204).
[23]
Groves, P.D. (2008). Principles of GNSS, inertial, and multisensor integrated navigation systems. Artech House.
[24]
Leppäkoski, H., Tikkinen, S., Takala, J. (2010). Optimizing radio map for WLAN fingerprinting. In Proc. UPINLBS, Kirkkonummi, Finland, 14-15 October (pp. 1-8).
[25]
Roos, T., Myllymäki, P., Tirri, H., Misikangas, P., Sievänen, J. (2002).Aprobabilistic approach to wlan user location estimation. International Journal of Wireless Information Networks, 9(3), 155-164.
[26]
VTI Technologies (2010). SCC1300-D04 combined gyroscope and 3-axis accelerometer with digital SPI interfaces. Rev. 1.0.3. Doc. Nr. 82 1131 00 A, Data sheet.

Cited By

View all
  • (2021)Noise segmentation for step detection and distance estimation using smartphone sensor dataWireless Networks10.1007/s11276-021-02588-027:4(2337-2346)Online publication date: 1-May-2021
  • (2019)Behaviors classification based distance measuring system for pedestrians via a foot‐mounted inertial sensorAsian Journal of Control10.1002/asjc.200521:4(1483-1495)Online publication date: 8-Oct-2019
  • (2016)Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphonesProceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing10.1145/2971648.2971742(374-385)Online publication date: 12-Sep-2016
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Signal Processing Systems
Journal of Signal Processing Systems  Volume 71, Issue 3
June 2013
139 pages
ISSN:1939-8018
EISSN:1939-8115
Issue’s Table of Contents

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2013

Author Tags

  1. Dead reckoning
  2. Indoor navigation
  3. Inertial navigation
  4. Kalman filters
  5. Particle filters

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2021)Noise segmentation for step detection and distance estimation using smartphone sensor dataWireless Networks10.1007/s11276-021-02588-027:4(2337-2346)Online publication date: 1-May-2021
  • (2019)Behaviors classification based distance measuring system for pedestrians via a foot‐mounted inertial sensorAsian Journal of Control10.1002/asjc.200521:4(1483-1495)Online publication date: 8-Oct-2019
  • (2016)Exploiting cyclic features of walking for pedestrian dead reckoning with unconstrained smartphonesProceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing10.1145/2971648.2971742(374-385)Online publication date: 12-Sep-2016
  • (2016)Improved particle filter based on WLAN RSSI fingerprinting and smart sensors for indoor localizationComputer Communications10.1016/j.comcom.2016.03.00183:C(64-71)Online publication date: 1-Jun-2016
  • (2015)IMAGOJournal of Ambient Intelligence and Smart Environments10.3233/AIS-1503347:5(679-692)Online publication date: 4-Sep-2015

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media