[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Scale Invariant Feature Transform on the Sphere: Theory and Applications

Published: 01 June 2012 Publication History

Abstract

A SIFT algorithm in spherical coordinates for omnidirectional images is proposed. This algorithm can generate two types of local descriptors, Local Spherical Descriptors and Local Planar Descriptors. With the first ones, point matching between two omnidirectional images can be performed, and with the second ones, the same matching process can be done but between omnidirectional and planar images. Furthermore, a planar to spherical mapping is introduced and an algorithm for its estimation is given. This mapping allows to extract objects from an omnidirectional image given their SIFT descriptors in a planar image. Several experiments, confirming the promising and accurate performance of the system, are conducted.

References

[1]
Barut, A. O., & Raczka, R. (1986). Theory of group representations and applications (2nd edn.). Singapore: World Scientific. ISBN 9971502178.
[2]
Baumberg, A. (2000). Reliable feature matching across widely separated views. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 774-781).
[3]
Bay, H., Ess, A., Tuytelaars, T., & Van Gool, L. (2008). Speeded-up robust features (SURF). Computer Vision and Image Understanding, 110(3), 346-359. http://www.sciencedirect.com/science/article/ B6WCX-4RC2S4T-2/1/cddc9c43940bd8fb62d6ed668de29e20.
[4]
Bogdanova, I., Bresson, X., Thiran, J. P., & Vandergheynst, P. (2007). Scale-space analysis and active contours for omnidirectional images. IEEE Transactions on Image Processing, 16(7), 1888-1901.
[5]
Boult, T. E., Micheals, R. J., Gao, X., & Eckmann, M. (2001). Into the woods: visual surveillance of noncooperative and camouflaged targets in complex outdoor settings. Proceedings of the IEEE, 89(10), 1382-1402.
[6]
Brox, T., Cremers, D., Gall, J., & Rosenhahn, B. (2010). Combined region- and motion-based 3d tracking of rigid and articulated objects. IEEE Transactions on Pattern Analysis and Machine Intelligence.
[7]
Bulow, T. (2004). Spherical diffusion for 3d surface smoothing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(12), 1650-1654.
[8]
Bur, A., Tapus, A., Ouerhani, N., Siegwart, R., & Hugli, H. (2006). Robot navigation by panoramic vision and attention guided features. In Proceedings of the 18th international conference on pattern recognition, Washington DC (pp. 695-698).
[9]
Chen, C. H., Yao, Y., Page, D., Abidi, B., Koschan, A., & Abidi, M. (2008). Heterogeneous fusion of omnidirectional and PTZ cameras for multiple object tracking. IEEE Transactions on Circuits and Systems for Video Technology, 18(8), 1052-1063.
[10]
Driscoll, J., & Healy, D. (1994). Computing Fourier transforms and convolutions on the 2-sphere. Advances in Applied Mathematics, 15(2), 202-250.
[11]
Ehlgen, T., Pajdla, T., & Ammon, D. (2008). Eliminating blind spots for assisted driving. IEEE Transactions on Intelligent Transportation Systems, 9(4), 657-665.
[12]
Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM, 24, 381-395.
[13]
Geyer, C., & Daniilidis, K. (2001). Catadioptric projective geometry. International Journal of Computer Vision, 45(3), 223-243.
[14]
Goedeme, T., Tuytelaars, T., Van Gool, L., Vanacker, G., & Nuttin, M. (2005). Omnidirectional sparse visual path following with occlusion-robust feature tracking. In Workshop on omnidirectional vision, camera networks and non-classical cameras-- OMNIVIS.
[15]
Hadj-Abdelkader, H., Malis, E., & Rives, P. (2008). Spherical image processing for accurate visual odometry with omnidirectional cameras. In Workshop on omnidirectional vision, camera networks and non-classical cameras--OMNIVIS.
[16]
Hansen, P., Corke, P., Boles, W., & Daniilidis, K. (2007a). Scale invariant feature matching with wide angle images. In Proceedings of the IEEE/RSJ international conference on intelligent robots and systems (IROS) (pp. 1668-1694).
[17]
Hansen, P., Corke, P., Boles, W., & Daniilidis, K. (2007b). Scale-invariant features on the sphere. In International conference on computer vision (pp. 1-8).
[18]
Harris, C., & Stephens, M. J. (1988). A combined corner and edge detector. In Alvey conference (pp. 147-152). http://www.csse. uwa.edu.au/~pk/Research/MatlabFns/Spatial/Docs/Harris/A_ Combined_Corner_and_Edge_Detector.pdf.
[19]
Kadir, T., & Brady, M. (2001). Saliency, scale and image description. International Journal of Computer Vision, 45(2), 83-105.
[20]
Lindeberg, T. (1998). Feature detection with automatic scale selection. International Journal of Computer Vision, 30(2), 79-116.
[21]
Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91-110.
[22]
Matas, J., Chum, O., Urba, M., & Pajdla, T. (2002). Robust wide base-line stereo from maximally stable extremal regions. In Proceedings of the British machine vision conference (pp. 384-393).
[23]
Mauthner, T., Fraundorfer, F., & Bischof, H. (2006). Region matching for omnidirectional images using virtual camera planes. In Proceedings of the computer vision winter workshop 2006.
[24]
Menegatti, E., Pretto, A., Scarpa, A., & Pagello, E. (2006). Omnidirectional vision scan matching for robot localization in dynamic environments. IEEE Transactions on Robotics, 22(3), 523-535.
[25]
Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(10), 1615-1630.
[26]
Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., & van Gool, L. (2005). A comparison of affine region detectors. International Journal of Computer Vision, 65(1), 43-72.
[27]
Rodrigues, O. (1840). Des lois géométriques qui régissent les déplacements d'un système solide dans l'espace, et de la variation des coordonnées provenant de ces déplacements considérés indépendamment des causes qui peuvent les produire. Journal de Mathématiques Pures et Appliquées, 5, 380-440.
[28]
Scaramuzza, D., & Siegwart, R. (2008). Appearance-guided monocular omnidirectional visual odometry for outdoor ground vehicles. IEEE Transactions on Robotics, 24(5), 1015-1026.
[29]
Sirmacek, B., & Unsalan, C. (2009). Urban-area and building detection using sift keypoints and graph theory. IEEE Transactions on Geoscience and Remote Sensing, 47(4), 1156-1167.
[30]
Smith, S. M., & Brady, J. M. (1997). Susan--a new approach to low level image processing. International Journal of Computer Vision, 23, 45-78.
[31]
Tamimi, H., Andreasson, H., Treptow, A., Duckett, T., & Zell, A. (2006). Localization of mobile robots with omnidirectional vision using particle filter and iterative sift. Robotics and Autonomous Systems, 54(9), 758-765. 04.018. http://www.sciencedirect.com/science/article/B6V16- 4KJ0SSH-1/2/a0cb5ac27fe99eec909f6767d486baa2. Selected papers from the 2nd European Conference on Mobile Robots (ECMR '05).
[32]
Tosic, I., & Frossard, P. (2009). Spherical imaging in omnidirectional camera networks. In Multi-camera networks: concepts and applications.
[33]
Tuytelaars, T., & Mikolajczyk, K. (2007). Local invariant feature detectors: a survey. Foundations and Trends in Computer Graphics and Vision, 3(3), 177-280.
[34]
Tygert, M. (2008). Fast algorithms for spherical harmonic expansions, II. Journal of Computational Physics, 227(8), 4260-4279.
[35]
Valgren, C., & Lilienthal, A. (2007). SIFT, SURF and seasons: longterm outdoor localization using local features. In Proceedings of the European conference on mobile robots (ECMR).
[36]
Van Gool, L. J., Moons, T., & Ungureanu, D. (1996). Affine/photometric invariants for planar intensity patterns. In Computer vision--ECCV'96 (pp. 642-651).
[37]
Vedaldi, A., & Fulkerson, B. (2008) VLFeat: an open and portable library of computer vision algorithms. http://www.vlfeat.org/.
[38]
Vincenty, T. (1975). Direct and inverse solutions of geodesics on the ellipsoid with application of nested equations. Survey Review, XXIII(176), 88-93.
[39]
Yuen, D., & MacDonald, B. (2005). Vision-based localization algorithm based on landmark matching, triangulation, reconstruction, and comparison. IEEE Transactions on Robotics, 21(2), 217-226.
[40]
Zabih, R., & Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Lecture notes in computer science. Computer vision--ECCV'94 (pp. 151-158). Berlin: Springer.

Cited By

View all
  • (2024)An Interactively Motion-Assisted Network for Multiple Object Tracking in Complex Traffic ScenesIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.331669125:2(1992-2004)Online publication date: 1-Feb-2024
  • (2024)Improved YOLOv7 models based on modulated deformable convolution and swin transformer for object detection in fisheye imagesImage and Vision Computing10.1016/j.imavis.2024.104966144:COnline publication date: 1-Apr-2024
  • (2024)2D Representations of 3D Point Clouds Via the Stereographic Projection with Encryption ApplicationsMultimedia Systems10.1007/s00530-024-01347-330:4Online publication date: 10-Jun-2024
  • Show More Cited By
  1. Scale Invariant Feature Transform on the Sphere: Theory and Applications

        Recommendations

        Comments

        Please enable JavaScript to view thecomments powered by Disqus.

        Information & Contributors

        Information

        Published In

        cover image International Journal of Computer Vision
        International Journal of Computer Vision  Volume 98, Issue 2
        June 2012
        119 pages

        Publisher

        Kluwer Academic Publishers

        United States

        Publication History

        Published: 01 June 2012

        Author Tags

        1. (Spherical) image processing
        2. Feature extraction
        3. Matching
        4. Object detection
        5. Omnidirectional vision
        6. SIFT

        Qualifiers

        • Article

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)0
        • Downloads (Last 6 weeks)0
        Reflects downloads up to 14 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)An Interactively Motion-Assisted Network for Multiple Object Tracking in Complex Traffic ScenesIEEE Transactions on Intelligent Transportation Systems10.1109/TITS.2023.331669125:2(1992-2004)Online publication date: 1-Feb-2024
        • (2024)Improved YOLOv7 models based on modulated deformable convolution and swin transformer for object detection in fisheye imagesImage and Vision Computing10.1016/j.imavis.2024.104966144:COnline publication date: 1-Apr-2024
        • (2024)2D Representations of 3D Point Clouds Via the Stereographic Projection with Encryption ApplicationsMultimedia Systems10.1007/s00530-024-01347-330:4Online publication date: 10-Jun-2024
        • (2024)HayCAMJ: A new method to uncover the importance of main filter for small objects in explainable artificial intelligenceNeural Computing and Applications10.1007/s00521-024-09640-y36:18(10791-10798)Online publication date: 1-Jun-2024
        • (2023)Perspectively Equivariant Keypoint Learning for Omnidirectional ImagesIEEE Transactions on Image Processing10.1109/TIP.2023.327003232(2552-2567)Online publication date: 1-Jan-2023
        • (2023)Swin-Fusion: Swin-Transformer with Feature Fusion for Human Action RecognitionNeural Processing Letters10.1007/s11063-023-11367-155:8(11109-11130)Online publication date: 1-Dec-2023
        • (2022)3D Scene Geometry Estimation from 360° Imagery: A SurveyACM Computing Surveys10.1145/351902155:4(1-39)Online publication date: 21-Nov-2022
        • (2022)SpherePHD: Applying CNNs on 360${}^\circ$ Images With Non-Euclidean Spherical PolyHeDron RepresentationIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2020.299704544:2(834-847)Online publication date: 1-Feb-2022
        • (2022)Automatic objects’ depth estimation based on integral imagingMultimedia Tools and Applications10.1007/s11042-022-13221-381:30(43531-43549)Online publication date: 1-Dec-2022
        • (2022)Breast density measurement methods on mammograms: a reviewMultimedia Systems10.1007/s00530-022-00955-128:6(2367-2390)Online publication date: 1-Dec-2022
        • Show More Cited By

        View Options

        View options

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media