[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Controlled mutual quantum entity authentication with an untrusted third party

Published: 01 July 2018 Publication History

Abstract

We propose a quantum control entity mutual authentication protocol that can be executed in environments involving an untrusted third party. In general, the third party, referred to as Charlie, can be an entity such as a telephone company, server, financial company, or login webpage for a portal service. Most communication protocols controlled by third parties are vulnerable to internal attacks. In this study, we present two solutions that make use of an entanglement correlation checking method and random numbers against an internal attack by an untrusted third party.

References

[1]
Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. In: IEEE International Conference on Computers Systems and Signal Processing, Bangalore, India, pp. 175---179. IEEE, New York (1984)
[2]
Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67(6), 661---663 (1991)
[3]
Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68(21), 3121---3124 (1992)
[4]
Lo, H.-K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)
[5]
Tang, Y.L., Yin, H.L., Chen, S.J., et al.: Measurement-device-independent quantum key distribution over 200 km. Phys. Rev. Lett. 114, 069901 (2015)
[6]
He, J., Li, Q., Wu, C., Chan, W.H., Zhang, S.: Measurement-device-independent semiquantum key distribution. Int. J. Quantum Inf. 16, 1850012 (2018)
[7]
Zhao, Z., Chen, Y.A., Zhang, A.N., Yang, T., Briegel, H.J., Pan, J.W.: Experimental demonstration of five-photon entanglement and open-destination teleportation. Nature 430, 54---58 (2004)
[8]
Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72, 022338 (2005)
[9]
Gao, T., Yan, F.L., Wang, Z.X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14(5), 893---897 (2005)
[10]
Yang, K., Huang, L., Yang, W., Song, F.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516---521 (2009)
[11]
Wang, X.W., Su, Y.H., Yang, G.J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319---330 (2009)
[12]
Wang, T.Y., Wen, Q.Y.: Controlled quantum teleportation with Bell states. Chin. Phys. B 20(4), 040307 (2011)
[13]
Hillery, M., Bu?ek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829---1834 (1999)
[14]
Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162---168 (1999)
[15]
Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum---secret---sharing schemes. Phys. Rev. A 69, 052307 (2004)
[16]
Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum-state sharing of an arbitrary two-particle state with Einstein---Podolsky---Rosen pairs. Phys. Rev. A 72, 044301 (2005)
[17]
Deng, F.G., Li, X.H., Zhou, H.Y.: Improving the security of multiparty quantum secret sharing against trojan horse attack. Phys. Rev. A 72, 044302 (2005)
[18]
Li, X.H., Zhou, P., Li, C.Y., et al.: Efficient symmetric multiparty quantum state sharing of an arbitrary m-qubit state. J. Phys. B: At. Mol. Opt. Phys. 39(8), 1975---1983 (2006)
[19]
Deng, F.G., Zhou, P., Li, X.H., Li, C.Y., Zhou, H.Y.: Efficient multiparty quantum secret sharing with Greenberger-Horne-Zeilinger States. Chin. Phys. Lett. 23(5), 1084---1087 (2006)
[20]
Hsieh, C.R., Tsai, C.W., Hwang, T.: Quantum secret sharing using GHZ-like state. Commun. Theor. Phys. 54(6), 1019---1022 (2010)
[21]
Chen, X.B., Niu, X.X., Zhou, X.J., Yang, Y.X.: Multi-party quantum secret sharing with the single-particle quantum state to encode the information. Quantum Inf. Process. 12, 365---380 (2013)
[22]
Chen, X.B., Xu, G., Su, Y., Yang, Y.X.: Robust variations of secret sharing through noisy quantum channel. Quantum Inf. Comput. 14(78), 589---607 (2014)
[23]
Man, Z.X., Zhang, Z.J., Li, Y.: Deterministic secure direct communication by using swapping quantum entanglement and local unitary operations. Chin. Phys. Lett. 22(1), 18---21 (2005)
[24]
Gao, T., Yan, F.L., Wang, Z.X.: Deterministic secure direct communication using GHZ states and swapping quantum entanglement. J. Phys. A 38, 5761 (2005)
[25]
Wang, C., Deng, F., Long, G.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state. Opt. Commun. 253, 15 (2005)
[26]
Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication. Phys. Rev. A 73, 042305 (2006)
[27]
Jin, X.R., Ji, X., Zhang, Y.Q., Zhang, S., Hong, S.K., Yeon, K.H., Um, C.I.: Three-party quantum secure direct communication based on GHZ states. Phys. Lett. A 354(1), 67---70 (2006)
[28]
Man, Z.-X., Xia, Y.-J., An, N.B.: Quantum secure direct communication by using GHZ states and entanglement swapping. J. Phys. B: At. Mol. Opt. Phys. 39, 3855---3864 (2006)
[29]
Kao, S.H., Hwang, T.: Cryptanalysis and improvement of controlled secure direct communication. Chin. Phys. B 22, 060308 (2013)
[30]
Dong, L., Xiu, X.M., Gao, Y.J., Ren, Y.P., Liu, H.W.: Controlled three-party communication using GHZ-like state and imperfect Bell-state measurement. Opt. Commun. 284, 905---908 (2011)
[31]
Dai, H.Y., Chen, P.X., Zhang, M., Li, C.Z.: Classical communication cost and remote preparation of the four-particle GHZ class state. Phys. Lett. A 355, 285---288 (2006)
[32]
Peng, J.Y., Luo, M.X., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325---2342 (2013)
[33]
Zhou, N.R., Cheng, H.L., Tao, X.Y., Gong, L.H.: Three-party remote state preparation schemes based on entanglement. Quantum Inf. Process. 13, 513 (2014)
[34]
Chen, X.-B., Dou, Z., Xu, G., Wang, C., Yang, Y.: A class of protocols for quantum private comparison based on the symmetry of states. Quantum Inf. Process. 13, 85 (2014)
[35]
Wei, Z.H., Chen, X.B., Niu, X.X., et al.: The quantum steganography protocol via quantum noisy channels. Int. J. Theor. Phys. 54(8), 2505---2515 (2015)
[36]
Xu, G., Chen, X.-B., Dou, Z., Yang, Y.-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14, 2959---2980 (2015)
[37]
Peev, M., Pacher, C., Alléaume, R., et al.: The SECOQC quantum key distribution network in Vienna. New J. Phys. 11, 075001 (2009)
[38]
Sasaki, M., Fujiwara, M., Ishizuka, H., et al.: Field test of quantum key distribution in the Tokyo QKD network. Opt. Express 19, 10387---10409 (2011)
[39]
Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., et al.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481---486 (2007)
[40]
Fröhlich, B., Dynes, J.F., Lucamarini, M., Sharpe, A.W., Yuan, Z., Shields, A.J.: A quantum access network. Nature 501(7465), 69---72 (2013)
[41]
Tang, Y.-L., Yin, H.-L., Zhao, Q., et al.: Measurement-device-independent quantum key distribution over untrustful metropolitan network. Phys. Rev. X 6, 011024 (2016)
[42]
Hong, C.H., Heo, J., Khym, G.L., Lim, J.I., Hong, S.K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283, 2644 (2010)
[43]
Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: A quantum network system of QSS-QDC using ?-type entangled states. Chin. Phys. Lett. 29, 050303 (2012)
[44]
Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Multi-user quantum network system and quantum communication using ?-type entangled states. J. Korean. Phys. Soc. 61, 1---5 (2012)
[45]
Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum secure direct communication network with hyperentanglement. Chin. Phys. B 23, 090309 (2014)
[46]
Li, J., Chen, X.B., Xu, G., et al.: Perfect quantum network coding independent of classical network solutions. IEEE Commun. Lett. 19, 115---118 (2015)
[47]
Broadbent, A.J., Fitzsimons, F., Kashefi, E.: Universal blind quantum computation. In: Proceedings of the 50th Annual IEEE Symposium on Foundations of Computer Science, p. 517. IEEE Computer Society, Los Alamitos (2009)
[48]
Li, Q., Li, Z., Chan, W.H., Zhang, S., Liu, C.: Blind quantum computation with identity authentication. Phys. Lett. A 382, 938 (2018)
[49]
Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security, pp. 113---124 (2011)
[50]
Tebaa, M., El Hajji, S., El Ghazi, A.: Homomorphic encryption applied to the cloud computing security. Proc. World Congr. Eng. 1, 4---6 (2012)
[51]
Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24, 090306 (2015)
[52]
Gao, G., Wang, Y.: Cryptanalysis of controlled mutual quantum entity authentication using entanglement swapping. Commun. Theor. Phys. 67(1), 33---36 (2017)
[53]
Ingemarsson, I., Simmons, G.J.: A protocol to set up shared secret schemes without the assistance of a mutually trusted party. In: Advances in Cryptology--Proceedings of Eurocrypt'90, pp. 266---282. Springer, Berlin (1991)
[54]
Gao, G., Fang, M., Cheng, M.T.: Cryptanalysis and improvement of a quantum network system of QSS-QDC using chi-type entangled states. Chin. Phys. Lett. 29, 110305 (2012)
[55]
Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication. Quantum Inf. Process. 16, 24 (2017)
[56]
Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Opt. Commun. 396, 239 (2017)
[57]
Li, C.Y., Zhou, H.Y., Wang, Y., Deng, F.G.: Secure quantum key distribution network with Bell states and local unitary operations. Chin. Phys. Lett. 22, 1049 (2005)
[58]
Li, C.Y., Li, X.H., et al.: Efficient quantum cryptography network without entanglement and quantum memory. Chin. Phys. Lett. 23, 2896 (2006)
[59]
Yoon, C.S., Kang, M.S., Lim, J.I., Yang, H.J.: Quantum signature scheme based on a quantum search algorithm. Phys. Scr. 90, 015103 (2015)
[60]
Hong, C.H., Lim, J.I., Kim, J.I., Yang, H.J.: Two-way quantum direct communication protocol using entanglement swapping. Korean Phys. Soc. 56, 1733 (2010)
[61]
Hong, C.H., Heo, J., Jang, J.G., Kwon, D.: Quantum identity authentication with single photon. Quantum Inf. Process. 16(10), 236---2181 (2017)

Cited By

View all
  • (2021)Client-server Identification Protocols with Quantum PUFACM Transactions on Quantum Computing10.1145/34841972:3(1-40)Online publication date: 30-Sep-2021
  • (2021)Measurement-device-independent mutual quantum entity authenticationQuantum Information Processing10.1007/s11128-021-03093-120:4Online publication date: 1-Apr-2021
  1. Controlled mutual quantum entity authentication with an untrusted third party

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Quantum Information Processing
      Quantum Information Processing  Volume 17, Issue 7
      July 2018
      569 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 July 2018

      Author Tags

      1. GHZ-like state
      2. Internal attack
      3. Quantum entity authentication
      4. Untrusted third party

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 20 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2021)Client-server Identification Protocols with Quantum PUFACM Transactions on Quantum Computing10.1145/34841972:3(1-40)Online publication date: 30-Sep-2021
      • (2021)Measurement-device-independent mutual quantum entity authenticationQuantum Information Processing10.1007/s11128-021-03093-120:4Online publication date: 1-Apr-2021

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media