[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Non-commuting two-local Hamiltonians for quantum error suppression

Published: 01 April 2017 Publication History

Abstract

Physical constraints make it challenging to implement and control many-body interactions. For this reason, designing quantum information processes with Hamiltonians consisting of only one- and two-local terms is a worthwhile challenge. Enabling error suppression with two-local Hamiltonians is particularly challenging. A no-go theorem of Marvian and Lidar (Phys Rev Lett 113(26):260504, 2014) demonstrates that, even allowing particles with high Hilbert space dimension, it is impossible to protect quantum information from single-site errors by encoding in the ground subspace of any Hamiltonian containing only commuting two-local terms. Here, we get around this no-go result by encoding in the ground subspace of a Hamiltonian consisting of non-commuting two-local terms arising from the gauge operators of a subsystem code. Specifically, we show how to protect stored quantum information against single-qubit errors using a Hamiltonian consisting of sums of the gauge generators from Bacon---Shor codes (Bacon in Phys Rev A 73(1):012340, 2006) and generalized-Bacon---Shor code (Bravyi in Phys Rev A 83(1):012320, 2011). Our results imply that non-commuting two-local Hamiltonians have more error-suppressing power than commuting two-local Hamiltonians. While far from providing full fault tolerance, this approach improves the robustness achievable in near-term implementable quantum storage and adiabatic quantum computations, reducing the number of higher-order terms required to encode commonly used adiabatic Hamiltonians such as the Ising Hamiltonians common in adiabatic quantum optimization and quantum annealing.

References

[1]
Marvian, I., Lidar, D.A.: Quantum error suppression with commuting Hamiltonians: two local is too local. Phys. Rev. Lett. 113(26), 260504 (2014).
[2]
Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73(1), 012340 (2006).
[3]
Bravyi, S.: Subsystem codes with spatially local generators. Phys. Rev. A 83(1), 012320 (2011).
[4]
Nielsen, M., Chuang, I.: Quantum Computing and Quantum Information. Cambridge University Press, Cambridge (2001)
[5]
Rieffel, E.G., Polak, W.: Quantum Computing: A Gentle Introduction. MIT Press, Cambridge (2011)
[6]
Terhal, B.M.: Quantum error correction for quantum memories. Rev. Mod. Phys. 87(2), 307 (2015).
[7]
Jordan, S.P., Farhi, E., Shor, P.W.: Error-correcting codes for adiabatic quantum computation. Phys. Rev. A 74(5), 052322 (2006).
[8]
Young, K.C., Sarovar, M., Blume-Kohout, R.: Error suppression and error correction in adiabatic quantum computation: techniques and challenges. Phys. Rev. X 3(4), 041013 (2013).
[9]
Bravyi, S., Vyalyi, M.: Commutative version of the local Hamiltonian problem and common eigenspace problem. Quantum Inf. Comput. 5(3), 187 (2005). http://www.rintonpress.com/journals/qiconline.html
[10]
Aharonov, D., Eldar, L.: On the complexity of commuting local Hamiltonians, and tight conditions for topological order in such systems. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science (FOCS) (2011), pp. 334---343.
[11]
Aliferis, P., Cross, A.W.: Subsystem fault tolerance with the Bacon---Shor code. Phys. Rev. Lett. 98(22), 220502 (2007).
[12]
Cross, A.W., Divincenzo, D.P., Terhal, B.M.: A comparative code study for quantum fault tolerance. Quantum Inf. Comput. 9(7), 541 (2009). http://dl.acm.org/citation.cfm?id=2011814.2011815
[13]
Elliott, C.: Building the quantum network. New J. Phys. 4(1), 46 (2002).
[14]
Kimble, H.J.: The quantum internet. Nature 453(7198), 1023 (2008).
[15]
Poulin, D.: Stabilizer formalism for operator quantum error correction. Phys. Rev. Lett. 95(23), 230504 (2005).
[16]
Brell, C.G., Flammia, S.T., Bartlett, S.D., Doherty, A.C.: Toric codes and quantum doubles from two-body Hamiltonians. New J. Phys. 13(5), 053039 (2011).
[17]
Dorier, J., Becca, F., Mila, F.: Quantum compass model on the square lattice. Phys. Rev. B 72(2), 024448 (2005).
[18]
Leggett, A.J., Chakravarty, S., Dorsey, A.T., Fisher, M.P.A., Garg, A., Zwerger, W.: Dynamics of the dissipative two-state system. Rev. Mod. Phys. 59(1), 1 (1987).
[19]
Pudenz, K.L., Albash, T., Lidar, D.A.: Error-corrected quantum annealing with hundreds of qubits. Nat. Commun. (2014).
[20]
Brzezicki, W., Oleś, A.M.: Symmetry properties and spectra of the two-dimensional quantum compass model. Phys. Rev. B 87(21), 214421 (2013).

Cited By

View all
  • (2021)Reducing quantum annealing biases for solving the graph partitioning problemProceedings of the 18th ACM International Conference on Computing Frontiers10.1145/3457388.3458672(133-139)Online publication date: 11-May-2021

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Quantum Information Processing
Quantum Information Processing  Volume 16, Issue 4
April 2017
428 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 April 2017

Author Tags

  1. Adiabatic quantum computing
  2. Adiabatic quantum optimization
  3. Bacon---Shor code
  4. Error suppression
  5. Quantum annealing
  6. Subsystem quantum error-correcting code
  7. Two-local Hamiltonian

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Reducing quantum annealing biases for solving the graph partitioning problemProceedings of the 18th ACM International Conference on Computing Frontiers10.1145/3457388.3458672(133-139)Online publication date: 11-May-2021

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media