[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Tracking topic evolution via salient keyword matching with consideration of semantic broadness for Web video discovery

Published: 01 August 2018 Publication History

Abstract

A method to track topic evolution via salient keyword matching with consideration of semantic broadness for Web video discovery is presented in this paper. The proposed method enables users to understand the evolution of topics over time for discovering Web videos in which they are interested. A framework that enables extraction and tracking of the hierarchical structure, which contains Web video groups with various degrees of semantic broadness, is newly derived as follows: Based on network analysis using multimodal features, i.e., features of video contents and metadata, our method extracts the hierarchical structure and salient keywords that represent contents of each Web video group. Moreover, salient keyword matching, which is newly developed by considering salient keyword distribution, semantic broadness of each Web video group and initial topic relevance, is applied to each hierarchical structure obtained in different time stamps. Unlike methods in previous works, by considering the semantic broadness as well as the salient keyword distribution, our method can overcome the problem of the desired semantic broadness of topics being different depending on each user. Also, the initial topic relevance enables correction of the gap from an initial topic at the start of tracking. Consequently, it becomes feasible to track the evolution of topics over time for finding Web videos in which the users are interested. Experimental results for real-world datasets containing YouTube videos verify the effectiveness of the proposed method.

References

[1]
Araujo A, Chaves J, Chen D, Angst R, Girod B (2015) Stanford i2v: a news video dataset for query-by-image experiments. In: Proc. ACM Multimedia systems conf., pp 237---242
[2]
Astola J, Haavisto P, Neuvo Y (1990) Vector median filters. In: Proc. IEEE, pp 678---689
[3]
Bird S (2006) Nltk: the natural language toolkit. In: Proc. COLING/ACL interactive presentation sessions, pp 69---72
[4]
Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of communities in large networks. J Stat Mech P10008
[5]
Butafogo RA, Schneiderman B (1991) Identifying aggregates in hypertext structures. In: Proc. 3rd ACM conf. hypertext, pp 63---74
[6]
Cao J, Zhang YD, Song YC, Chen ZNXZ, Li J (2009) Mcg-webv: a benchmark dataset for web video analysis. Technical Report, ICT-MCG-09-001, Institute of Computing Technology
[7]
Cao J, Ngo CW, Zhang YD, Li JT (2011) Tracking web video topics: discovery, visualization, and monitoring. IEEE Trans Circ Syst Vid Technol 21(12):1835---1846
[8]
Cao J, Zhang Y, Ji R, Li X (2016) On application-unbiased benchmarking of web videos from a social network perspective. Multimed Tools Appl 75(3):1543---1556
[9]
Cao J, Zhang Y, Ji R, Xie F, Su Y (2016) Web video topics discovery and structuralization with social network. Neurocomputing 172(C):53---63
[10]
Chen T, Liu C, Huang Q (2012) An effective multi-clue fusion approach for web video topic detection. In: Proc. ACM multimedia conf., pp 781---784
[11]
Chen XJ, Zhan YZ, Ke J, Chen XB (2015) Complex video event detection via pairwise fusion of trajectory and multi-label hypergraphs. Multimed Tools Appl pp 1---22.
[12]
Cheng X, Dale C, Liu J (2008) Statistics and social network of youtube videos. In: Proc. IEEE Int. workshop on quality of service, pp 229---238
[13]
Csurka G, Dance CR, Fan LJW, Bray C (2004) Visual categorization with bags of keypoints. In: Proc. ECCV Workshop on statistical learning in computer vision, pp 1---22
[14]
Fang Q, Xu C, Sang J, Hossain MS, Ghoneim A (2016) Folksonomy-based visual ontology construction and its applications. IEEE Trans Multimed 18(4):702---713
[15]
Feng B, Cao J, Chen Z, Zhang Y, Lin S (2010) Multi-modal query expansion for web video search. In: Proc. ACM SIGIR, pp 721---722
[16]
Gantz J, Reinsel D (2012) The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east. In: IDC iView
[17]
Gargi U, Lu W, Mirrokni V, Yoon S (2011) Large-scale community detection on youtube for topic discovery and exploration. In: Proc. Int. AAAI conf. weblogs and social media, pp 486---489
[18]
Greetha P, Narayanan V (2008) A survey of content-based video retrieval. J Comput Sci 4(6):474---486
[19]
Hanjalic A (2013) Multimedia retrieval that matters. ACM Trans Multimed Comput Commun Appl 9(1s):44,1---44,5
[20]
Harakawa R, Ogawa T, Haseyama M (2015) Extraction of hierarchical structure of web communities including salient keyword estimation for web video retrieval. In: Proc. IEEE Int. conf. image processing, pp 1021---1025
[21]
Harakawa R, Ogawa T, Haseyama M (2016) Accurate and efficient extraction of hierarchical structure of web communities for web video retrieval. ITE Trans Media Technol Appl 4(1):49---59
[22]
Harakawa R, Ogawa T, Haseyama M (2016) Tracking hierarchical structure of web video groups based on salient keyword matching including semantic broadness estimation. In: Proc. IEEE Global conf. signal and information processing, pp 1238---1242
[23]
Harakawa R, Ogawa T, Haseyama M (2016) A web video retrieval method using hierarchical structure of web video groups. Multimed Tools Appl 75(24):17,059---17,079. https://doi.org/10.1007/s11042-015-2976-8
[24]
Harakawa R, Ogawa T, Haseyama M (2017) Extracting hierarchical structure of web video groups based on sentiment-aware signed network analysis. IEEE Access 5:16,963---16,973
[25]
Haseyama M, Ogawa T, Yagi N (2013) A review of video retrieval based on image and video semantic understanding. ITE Trans Media Technol Appl 1(1):2---9
[26]
Hatakeyama Y, Ogawa T, Asamizu S, Haseyama M (2009) A novel video retrieval method based on web community extraction using features of video materials. IEICE Trans Fundament E92-A(8):1961---1969
[27]
Hindle A, Shao J, Lin D, Lu J, Zhang R (2011) Clustering web video search results based on integration of multiple features. World Wide Web 14(1):53---73
[28]
Hu W, Xie N, Li L, Zeng X, Maybank S (2011) A survey on visual content-based video indexing and retrieval. IEEE Trans Syst Man Cybern Part C: Appl Rev 41(6):797---819
[29]
Huang J, Kumar SR, Mitra M, Zhu WJ (1998) Spatial color indexing and applications. In: Int. Conf. computer vision (IEEE Cat. No.98CH36271), pp 602---607
[30]
Jhuo IH, Lee DT (2014) Video event detection via multi-modality deep learning. In: Proc. IEEE Int. conf. pattern recognition, pp 666---671
[31]
Jiang L (2016) Web-scale multimedia search for internet video content. In: Proc. Int. conf. companion on World Wide Web, pp 311---316
[32]
Kamie M, Hashimoto T, Kitagawa H (2012) Effective web video clustering using playlist information. In: Proc. ACM Symp. applied computing, pp 949---956
[33]
Kleinberg JM (1999) Authoritative sources in a hyperlinked environment. J ACM 46(5):604---632
[34]
Kofler C, Larson M, Hanjalic A (2014) Intent-aware video search result optimization. IEEE Trans Multimed 16(5):1421---1433
[35]
Le QV, Mikolov T (2014) Distributed representations of sentences and documents. Comput Res Repos http://arXiv.org/abs/1405.4053, 1---9
[36]
Li G, Jiang S, Zhang W, Pang J, Huang Q (2016) Online web video topic detection and tracking with semi-supervised learning. Multimed Syst 22(1):115---125
[37]
Liu L, Sun L, Rui Y, Shi Y, Yang S (2008) Web video topic discovery and tracking via bipartite graph reinforcement model. In: Proc. ACM Int. conf. world wide web, pp 1009---1018
[38]
Lu Z, Lin YR, Huang X, Xiong N, Fang Z (2017) Visual topic discovering, tracking and summarization from social media streams. Multimed Tools Appl 76(8):10,855---10,879
[39]
Ma Z, Yang Y, Xu Z, Yan S, Sebe N, Hauptmann AG (2013) Complex event detection via multi-source video attributes. In: Proc. IEEE Conf. computer vision and pattern recognition, pp 2627---2633
[40]
MacQueen J (1967) Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symp. mathematical statistics and probability, pp 281---297
[41]
Mazloom M, Habibian A, Snoek CGM (2013) Querying for video events by semantic signatures from few examples. In: Proc. ACM multimedia conf., pp 609---612
[42]
Miller GA (1995) Wordnet: a lexical database for english. Commun ACM 38 (11):39---41
[43]
Nagasaka A, Tanaka Y (1991) Automatic video indexing and fullvideo search for object appearances. In: Proc. IFIP 2nd Working conf. visual database systems, pp 113---127
[44]
Natarajan P, Wu S, Vitaladevuni S, Zhuang X, Tsakalidis S, Park U, Prasad R, Natarajan P (2012) Multimodal feature fusion for robust event detection in web videos. In: Proc. IEEE Conf. computer vision and pattern recognition, pp 1298---1305
[45]
Ngo CW, Pong TC, Zhang HJ (2001) On clustering and retrieval of video shots. In: Proc. ACM Multimedia conf., pp 51---60
[46]
Ngo CW, Pong TC, Zhang HJ (2002) On clustering and retrieval of video shots through temporal slices analysis. IEEE Trans Multimed 4(4):446---458
[47]
Reed C, Elvers T, Srinivasan P (2011) What's trending?: mining topical trends in ugc systems with youtube as a case study. In: Proc. Int. Workshop on multimedia data mining, pp 4:1---4:9
[48]
Sang J, Xu C (2011) Browse by chunks: topic mining and organizing on web-scale social media. ACM Trans Multimed Comput Commun Appl 7S(1):30,1---30,18
[49]
Shao J, Yin W, Ma S, Zhuang Y (2010) Topic discovery of web video using star-structured k-partite graph. In: Proc. ACM Int. conf. multimedia. ACM, pp 915---918
[50]
Shao J, Ma S, Lu W, Zhuang Y (2012) A unified framework for web video topic discovery and visualization. Pattern Recogn Lett 33(4):410---419
[51]
Taskiran C, Chen JY, Albiol A, Torres L, Bouman CA, Delp EJ (2004) Vibe: a compressed video database structured for active browsing and search. IEEE Trans Multimed 6(1):103---118
[52]
Turner V, Gantz J (2014) The digital universe of opportunities: Rich data and the increasing value of the internet of things. In: IDC iView
[53]
van der Vaart AW (1998) Asymptotic statistics. Cambridge University Press
[54]
Wu J, Worring M (2012) Efficient genre-specific semantic video indexing. IEEE Trans Multimed 14(2):291---302
[55]
Xie L, Natsev A, Kender JR, Hill M, Smith JR (2011) Visual memes in social media: tracking real-world news in youtube videos. In: Proc. ACM Multimedia conf., pp 53---62
[56]
Zhang X, Huang Z, Shen HT, Yang Y, Li Z (2011) Automatic tagging by exploring tag information capability and correlation. World Wide Web 15(3):233---256

Cited By

View all
  • (2024)VCR: Video representation for Contextual RetrievalProceedings of the International Conference on Computing, Machine Learning and Data Science10.1145/3661725.3661766(1-9)Online publication date: 12-Apr-2024

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Multimedia Tools and Applications
Multimedia Tools and Applications  Volume 77, Issue 16
August 2018
1520 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 August 2018

Author Tags

  1. Network analysis
  2. Topic evolution
  3. Tracking algorithm
  4. Video retrieval
  5. Web video

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)VCR: Video representation for Contextual RetrievalProceedings of the International Conference on Computing, Machine Learning and Data Science10.1145/3661725.3661766(1-9)Online publication date: 12-Apr-2024

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media