[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A review on automated diagnosis of malaria parasite in microscopic blood smears images

Published: 01 April 2018 Publication History

Abstract

Malaria is a life-threatening disease caused by parasite of genus plasmodium, which is transmitted through the bite of infected Anopheles. A rapid and accurate diagnosis of malaria is demanded for proper treatment on time. Mostly, conventional microscopy is followed for diagnosis of malaria in developing countries, where pathologist visually inspects the stained slide under light microscope. However, conventional microscopy has occasionally proved inefficient since it is time consuming and results are difficult to reproduce. Alternate techniques for malaria diagnosis based on computer vision were proposed by several researchers. The aim of this paper is to review, analyze, categorize and address the recent developments in the area of computer aided diagnosis of malaria parasite. Research efforts in quantification of malaria infection include normalization of images, segmentation followed by features extraction and classification, which were reviewed in detail in this paper. At the end of review, the existent challenges as well as possible research perspectives were discussed.

References

[1]
Abdul-Nasir AS, Mashor MY, Mohamed Z (2012) Modified global and modified linear contrast stretching algorithms: new colour contrast enhancement techniques for microscopic analysis of malaria slide images. Computational and Mathematical Methods in Medicine, vol. 2012. Article ID 637360, p 16
[2]
Aimi Salihah A-N, Yusoff M, Zeehaida M (2013) Colour image segmentation approach for detection of malaria parasites using various colour models and k-means clustering. Wseas Transactions on Biology and Biomedicine, vol. 10
[3]
Malaria Site --- History, Pathogenesis, Clinical Features, Diagnosis, Treatment, Complications and Control of Malaria. (n.d.). Retrieved September, 2015, from: http://www.malariasite.com
[4]
Anggraini D et al (2011) Automated status identification of microscopic images obtained from malaria thin blood smears. In Electrical Engineering and Informatics (ICEEI), 2011 International conference on. 17:347---352 IEEE
[5]
Arco J et al (2015) Digital image analysis for automatic enumeration of malaria parasites using morphological operations. Expert Systems with Applications, 42(6):3041---3047
[6]
World Health Organization. (2010). Basic malaria microscopy: Part I. Learner's guide. Basic malaria microscopy: Part I. Learner's guide., (Ed. 2)
[7]
Bates, I., Bekoe, V., & Asamoa-Adu, A. (2004). Improving the accuracy of malaria-related laboratory tests in Ghana. Malaria Journal, 3(1):38
[8]
Bernard Marcus PD (2009) Deadly diseases and epidemics: malaria. Chelsea House Publishers, New York, Second Edition ed
[9]
Chakrabortya K et al (2015) A combined algorithm for Malaria detection from thick smear blood slides J Health Med Inform 2015
[10]
Chayadevi M, Raju G (2015) Automated colour segmentation of malaria parasite with fuzzy and fractal methods. In Computational Intelligence in Data Mining-Volume (3):53---63. Springer India
[11]
Dallet C, Kareem S, Kale I (2014) Real time blood image processing application for malaria diagnosis using mobile phones. In Circuits and Systems (ISCAS), 2014 IEEE International Symposium on p 2405---2408. IEEE
[12]
Damahe LB, Krishna R, Janwe N (2011) Segmentation based approach to detect parasites and RBCs in blood cell images. Int J Comput Sci Appl 4:71---81
[13]
Das DK et al (2013) Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron 45:97---106
[14]
Devi RR et al (2011) Computerized shape analysis of erythrocytes and their formed aggregates in patients infected with P.Vivax Malaria. Advanced Computing: An International Journal (ACIJ) 2
[15]
Di Ruberto C et al (2002) Analysis of infected blood cell images using morphological operators. Image and vision computing 20(2):133---146
[16]
Di Rubeto C et al (2000) Segmentation of blood images using morphological operators. in Pattern Recognition. Proceedings. 15th International Conference on. IEEE
[17]
Díaz G, González FA (2009) E Romero, A semi-automatic method for quantification and classification of erythrocytes infected with malaria parasites in microscopic images. J Biomed Inform 42(2):296---307
[18]
Gatc J et al (2013) Plasmodium parasite detection on Red Blood Cell image for the diagnosis of malaria using double thresholding. In Advanced Computer Science and Information Systems (ICACSIS), 2013 International conference on. IEEE
[19]
Ghosh M et al (2011) Plasmodium vivax segmentation using modified fuzzy divergence. In Image Information Processing (ICIIP), 2011 International conference on. IEEE
[20]
Ghosh S, Ghosh A, Kundu S (2014) Estimating malaria parasitaemia in images of thin smear of human blood. CSI transactions on ICT 2(1):43---48
[21]
Gitonga L et al (2014) Determination of plasmodium parasite life stages and species in images of thin blood smears using artificial neural network. Open J Clin Diag 4(02):78
[22]
Gual-Arnau X, Herold-García S, Simó A (2015) Erythrocyte shape classification using integral-geometry-based methods. Med Biol Eng Comput 53(7):623---633
[23]
Halim S et al (2006) Estimating malaria parasitaemia from blood smear images. In 2006 9th international conference on control, automation, robotics and vision. IEEE
[24]
Hanif N, Mashor M, Mohamed Z (2011) Image enhancement and segmentation using dark stretching technique for Plasmodium Falciparum for thick blood smear. In Signal Processing and its Applications (CSPA), 2011 I.E. 7th international colloquium on. IEEE
[25]
Heijmans HJ (1999) Connected morphological operators for binary images. Comput Vis Image Underst 73(1):99---120
[26]
Hung Y-W et al (2015) Parasite and infected-erythrocyte image segmentation in stained blood smears. J Med Biol Eng 35(6):803---815
[27]
Kaewkamnerd S et al (2012) An automatic device for detection and classification of malaria parasite species in thick blood film. Bmc Bioinformatics, 13(17), S18
[28]
Kareem S, Kale I, Morling RC (2012a) Automated P. falciparum detection system for post-treatment malaria diagnosis using modified annular ring ratio method. In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on p 432---436. IEEE
[29]
Kareem S, Kale I, Morling RS (2012b) Automated malaria parasite detection in thin blood films:-A hybrid illumination and color constancy insensitive, morphological approach. In Circuits and Systems (APCCAS), 2012 IEEE Asia Pacific Conference on p 240---243. IEEE.
[30]
Kareem S, Morling RS, Kale I (2011) A novel method to count the red blood cells in thin blood films. In 2011 I.E. international symposium of circuits and systems (ISCAS). IEEE
[31]
Khan MI et al (2011) Content based image retrieval approaches for detection of malarial parasite in blood images. Intern J Biom Bioinform (IJBB) 5(2):97
[32]
Khan NA et al (2014) Unsupervised identification of malaria parasites using computer vision. In Computer Science and Software Engineering (JCSSE), 2014 11th international joint conference on. IEEE
[33]
Khatri K et al (2013) Image processing approach for malaria parasite identification. In International Journal of Computer Applications, National Conference on Growth of Technologies in Electronics, Telecom and Computers-India's Perception. Citeseer
[34]
Khattak AA et al (2013) Prevalence and distribution of human plasmodium infection in Pakistan. Malar J 12(1):297
[35]
Komagal E, Kumar KS, Vigneswaran A (2013) Recognition and classification of malaria plasmodium diagnosis. ESRSA Publications, In International Journal of Engineering Research and Technology
[36]
Kotsiantis SB, Zaharakis I, Pintelas P (2007) Supervised machine learning: a review of classification techniques
[37]
Kumar A et al (2012) Enhanced identification of malarial infected objects using otsu algorithm from thin smear digital images. International Journal of Latest Research in Science and Technology ISSN (Online) 2278---5299
[38]
Kumarasamy SK, Ong S, Tan KS (2011) Robust contour reconstruction of red blood cells and parasites in the automated identification of the stages of malarial infection. Machine Vision and Applications 22(3):461---469
[39]
Le M-T et al (2008) A novel semi-automatic image processing approach to determine plasmodium falciparum parasitemia in Giemsa-stained thin blood smears. BMC Cell Biol 9(1):15
[40]
Lee H, Chen Y-PP (2014) Cell morphology based classification for red cells in blood smear images. Pattern Recogn Lett 49:155---161
[41]
Linder N et al (2014) A malaria diagnostic tool based on computer vision screening and visualization of plasmodium falciparum candidate areas in digitized blood smears. PLoS One 9(8):e104855
[42]
Maiseli B et al (2014) An automatic and cost-effective parasitemia identification framework for low-end microscopy imaging devices. In Mechatronics and Control (ICMC), 2014 International conference on p 2048---2053. IEEE
[43]
Makkapati VV, Rao RM (2009) Segmentation of malaria parasites in peripheral blood Smear images. In 2009 I.E. international conference on acoustics, speech and signal processing. IEEE
[44]
Malaria disease concepts. Sept 2015. Available from: http://www.cdc.gov/malaria/
[45]
Malaria. (n.d.). Retrieved September, 2015, from: http://www.who.int/malaria/en/
[46]
Malihi L, Ansari-Asl K, Behbahani A (2013) Malaria parasite detection in giemsa-stained blood cell images. In Machine Vision and Image Processing (MVIP), 2013 8th Iranian Conference on IEEE
[47]
Mandal S et al (2010) Segmentation of blood smear images using normalized cuts for detection of malarial parasites. In 2010 Annual IEEE India conference (INDICON). IEEE
[48]
Mas D et al (2015) Novel image processing approach to detect malaria. Opt Commun 350:13---18
[49]
Mushabe MC, Dendere R, Douglas TS (2013) Automated detection of malaria in Giemsa-stained thin blood smears. In 2013 35th annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE
[50]
Nixon, M., Feature extraction & image processing. 2008: Academic press, Cambridge.
[51]
Nugroho AS et al (2014) Two-stage feature extraction to identify Plasmodium ovale from thin blood smear microphotograph. In Data and Software Engineering (ICODSE), 2014 International conference on. IEEE
[52]
Okwa, O.O. (2012). Malaria parasites. InTech.
[53]
Organization WH (2009) Malaria microscopy quality assurance manual. World Health Organization
[54]
Otsu N (1975) A threshold selection method from gray-level histograms. Automatica 11(285---296):23---27
[55]
Prasad K et al (2012) Image analysis approach for development of a decision support system for detection of malaria parasites in thin blood smear images. J Digit Imaging 25(4):542---549
[56]
Premaratne SP et al (2003) A neural network architecture for automated recognition of intracellular malaria parasites in stained blood films. CJ Janse and PH Van Vianen,. Flow cytometry in malaria detection. Methods Cell. Biol 42.
[57]
Purwar Y et al (2011) Automated and unsupervised detection of malarial parasites in microscopic images. Malar J 10(1):1
[58]
Rakshit P, Bhowmik K (2013) Detection of presence of parasites in human RBC in case of diagnosing malaria using image processing. In Image Information Processing (ICIIP), 2013 I.E. second international conference on. IEEE
[59]
Raviraja S, Bajpai G, Sharma SK (2007) Analysis of detecting the Malarial parasite infected blood images using statistical based approach. In 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. Springer
[60]
Rosado L et al (2016) Automated detection of malaria parasites on thick blood smears via mobile devices. Procedia Com Sci 90:138---144
[61]
Ross NE et al (2006) Automated image processing method for the diagnosis and classification of malaria on thin blood smears. Med Biol Eng Comput 44(5):427---436
[62]
Sajjad M, Khan S, Jan Z, Muhammad K, Moon H, Kwak JT, Mehmood I (2016) Leukocytes classification and segmentation in microscopic blood smear: a resource-aware healthcare service in smart cities. IEEE.
[63]
Savkare S, Narote S (2012) Automatic system for classification of erythrocytes infected with malaria and identification of parasite's life stage. Procedia Technol 6:405---410
[64]
Savkare S, Narote S (2015) Automated system for malaria parasite identification. in Communication, Information & Computing Technology (ICCICT), 2015 International Conference on IEEE
[65]
Sheeba F et al (2013) Detection of plasmodium falciparum in peripheral blood smear images. In Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA 2012). Springer
[66]
Annaldas MS, Shirgan SS & Marathe VR (2014) Enhanced identification of malaria parasite using different classification algorithms in thick film blood images. Int J Res Advent Technol 2(10)
[67]
Singh A, Shibu S, Dubey S (2014) Recent image enhancement techniques: a review. Intern J Eng Advanc Technol 4(1):40---45
[68]
Sio SW et al (2007) MalariaCount: an image analysis-based program for the accurate determination of parasitemia. J Microbiol Methods 68(1):11---18
[69]
Somasekar J, Reddy BE (2015) Segmentation of erythrocytes infected with malaria parasites for the diagnosis using microscopy imaging. Comput Electr Eng 45:336---351
[70]
Somasekar, J., et al., An image processing approach for accurate determination of parasitemia in peripheral blood smear images. International Journal of Computer Applications 23---28
[71]
Soni J (2011) Advanced image analysis based system for automatic detection of malarial parasite in blood images using SUSAN approach. Int J Eng Sci Technol 3(6):5260---5274
[72]
Suradkar PT (2013) Detection of malarial parasite in blood using image processing. Int J Eng Innov Technol (IJEIT) 2(10)
[73]
Suryawanshi MS, Dixit V (2013) Improved technique for detection of malaria parasites within the blood cell images. Int J Sci Eng Res 4:373---375
[74]
Suwalka I et al (2012) Identify malaria parasite using pattern recognition technique. In Computing, Communication and Applications (ICCCA), 2012 International Conference on p. 1---4 IEEE
[75]
Tek FB (2007) Computerised diagnosis of malaria. University of Westminster
[76]
Tek FB, Dempster AG, Kale I (2006) Malaria parasite detection in peripheral blood images. In BMVC
[77]
Tek FB, Dempster AG, Kale I (2009) Computer vision for microscopy diagnosis of malaria. Malaria Journal 8(1):153
[78]
Tek FB, Dempster AG, Kale İ (2010) Parasite detection and identification for automated thin blood film malaria diagnosis. Comput Vis Image Underst 114(1):21---32
[79]
Toha SF, Ngah UK (2007) Computer aided medical diagnosis for the identification of malaria parasites. In 2007 International conference on signal processing, communications and networking. IEEE
[80]
Tsai M-H et al (2015) Blood smear image based malaria parasite and infected-erythrocyte detection and segmentation. Journal of medical systems 39(10):118
[81]
Warhurst, D.C. and J.E. Williams, ACP Broadsheet no 148. July 1996. Laboratory diagnosis of malaria. J Clin Pathol 1996 49(7): p. 533---538.
[82]
What is Malaria? 2015. Available from: http://www.healthline.com/health/malaria
[83]
Widodo S (2014) Texture analysis to detect malaria tropica in blood smears image using support vector machine
[84]
World Malaria Report (2014) World Health Organization
[85]
Yunda L, Alarcón A, Millán J (2012) Automated image analysis method for p-vivax malaria parasite detection in thick film blood images. Sistemas y Telemática 10(20):9---25
[86]
Zhang D, Lu G (2004) Review of shape representation and description techniques. Pattern Recogn 37(1):1---19
[87]
Zou L-H et al (2010) Malaria cell counting diagnosis within large field of view. In Digital Image Computing: In Digital Image Computing: Techniques and Applications (DICTA), 2010 International Conference on p. 172---177 IEEE.

Cited By

View all
  • (2022)Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear ImagesComputational Intelligence and Neuroscience10.1155/2022/36267262022Online publication date: 1-Jan-2022
  • (2022)Adaptive tamper detection watermarking scheme for medical images in transform domainMultimedia Tools and Applications10.1007/s11042-022-12273-981:8(11605-11619)Online publication date: 1-Mar-2022
  • (2022)A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic imagesNeural Computing and Applications10.1007/s00521-021-06604-434:17(14223-14238)Online publication date: 1-Sep-2022
  • Show More Cited By

Index Terms

  1. A review on automated diagnosis of malaria parasite in microscopic blood smears images
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Multimedia Tools and Applications
      Multimedia Tools and Applications  Volume 77, Issue 8
      Apr 2018
      1145 pages

      Publisher

      Kluwer Academic Publishers

      United States

      Publication History

      Published: 01 April 2018

      Author Tags

      1. Classification
      2. Malaria parasite
      3. Parasite segmentation
      4. Red blood cells
      5. Thin blood smear

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 18 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2022)Computational Methods for Automated Analysis of Malaria Parasite Using Blood Smear ImagesComputational Intelligence and Neuroscience10.1155/2022/36267262022Online publication date: 1-Jan-2022
      • (2022)Adaptive tamper detection watermarking scheme for medical images in transform domainMultimedia Tools and Applications10.1007/s11042-022-12273-981:8(11605-11619)Online publication date: 1-Mar-2022
      • (2022)A generalized deep learning-based framework for assistance to the human malaria diagnosis from microscopic imagesNeural Computing and Applications10.1007/s00521-021-06604-434:17(14223-14238)Online publication date: 1-Sep-2022
      • (2020)Microscopic image super resolution using deep convolutional neural networksMultimedia Tools and Applications10.1007/s11042-019-7397-779:21-22(15397-15415)Online publication date: 1-Jun-2020
      • (2019)Development of a robust algorithm for detection of nuclei of white blood cells in peripheral blood smear imagesMultimedia Tools and Applications10.1007/s11042-018-7107-x78:13(17879-17898)Online publication date: 1-Jul-2019

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media