[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Progress on the Murty---Simon Conjecture on diameter-2 critical graphs: a survey

Published: 01 October 2015 Publication History

Abstract

A graph $$G$$G is diameter $$2$$2-critical if its diameter is two and the deletion of any edge increases the diameter. Murty and Simon conjectured that the number of edges in a diameter-$$2$$2-critical graph $$G$$G of order $$n$$n is at most $$\lfloor n^2/4 \rfloor $$ n2/4 and that the extremal graphs are the complete bipartite graphs $$K_{{\lfloor n/2 \rfloor },{\lceil n/2 \rceil }}$$K n/2, n/2 . We survey the progress made to date on this conjecture, concentrating mainly on recent results developed from associating the conjecture to an equivalent one involving total domination.

References

[1]
Balbuena V, Hansberg A, Haynes TW, Henning MA On total domination edge critical graphs with total domination number three and with many dominating pairs. Submitted for publication.
[2]
Bollobás B (1969) Graphs with given diameter and maximal valency and with a minimal number of edges. Combinatorial mathematics and its applications. Proc Conf Oxford, Academic Press, London, pp 25-37.
[3]
Bondy JA, Murty USR (1972) Extremal graphs of diameter two with prescribed minimum degree. Studia Sci Math Hung 7:239-241.
[4]
Caccetta L, Häggkvist R (1979) On diameter critical graphs. Discret Math 28(3):223-229.
[5]
Chudnovsky M (2012) The structure of bull-free graphs I-three-edge-paths with centers and anticenters. J Comb Theory Ser B 102:233-251.
[6]
Chudnovsky M (2012b) The structure of bull-free graphs II and III-A summary. J Comb Theory Ser B 102:252-282.
[7]
Chudnovsky M, Robertson N, Seymour P, Thomas R (2006) The strong perfect graph theorem. Ann Math 164:51-229.
[8]
Chudnovsky M, Safra S (2008) The Erdös-Hajnal conjecture for bull-free graphs. J Comb Theory Ser B 98:1301-1310.
[9]
Chudnovsky M, Seymour P (2007) Claw-free graphs. I. Orientable prismatic graphs. J Comb Theory Ser B 97(6):867-903.
[10]
Chudnovsky M, Seymour P (2008) Claw-free graphs. II. Non-orientable prismatic graphs. J Comb Theory Ser B 98(2):249-290.
[11]
Chudnovsky M, Seymour P (2008a) Claw-free graphs. III. Circular interval graphs. J Comb Theory Ser B 98(4):812-834.
[12]
Chudnovsky M, Seymour P (2008b) Claw-free graphs. IV. Decomposition theorem. J Comb Theory Ser B 98(5):839-938.
[13]
Chudnovsky M, Seymour P (2008c) Claw-free graphs. V. Global structure. J Comb Theory Ser B 98(6):1373-1410.
[14]
Chvátal V, Sbihi N (1987) Bull-free Berge graphs are perfect. Graphs Comb 3:127-139.
[15]
Cockayne E, Dawes R, Hedetniemi S (1980) Total domination in graphs. Networks 10:211-219.
[16]
Erdös P, Hajnal A (1989) Ramsey-type theorems. Discret Appl Math 25:37-52.
[17]
Fan G (1987) On diameter 2-critical graphs. Discret Math 67:235-240.
[18]
Flandrin E, Faudree R, Ryjá¿ek Z (1997) Claw-free graphs-a survey. Discret Math 164:87-147.
[19]
Füredi Z (1992) The maximum number of edges in a minimal graph of diameter 2. J Graph Theory 16:81-98.
[20]
Gliviak F (1968) On certain classes of graphs of diameter two without superfluous edges. Acta F.R.N Univ Com Math 21:39-48.
[21]
Gliviak F (1975a) On the impossibility to construct diametrically critical graphs by extensions. Arch Math (Brno) 11(3):131-137.
[22]
Gliviak F (1975b) On certain edge-critical graphs of a given diameter. Matematicky ¿asopis 25(3):249-263.
[23]
Gliviak F, Ky¿ P, Plesník J (1969) On the extension of graphs with a given diameter without superfluous edges. Matematicky ¿asopis 19:92-101.
[24]
Hanson D, Wang P (2003) A note on extremal total domination edge critical graphs. Util Math 63:89-96.
[25]
Haynes TW, Hedetniemi ST, Slater PJ (1998a) Fundamentals of domination in graphs. Marcel Dekker, Inc., New York.
[26]
Haynes TW, Hedetniemi ST, Slater P (1998b) Domination in graphs: advanced topics. Marcel Dekker, Inc., New York.
[27]
Haynes TW, Henning MA (2012a) A characterization of diameter-2-critical graphs with no antihole of length four. Central Eur J Math 10(3):1125-1132.
[28]
Haynes TW, Henning MA (2012b) A characterization of diameter-2-critical graphs whose complements are diamond-free. Discret Appl Math 160:1979-1985.
[29]
Haynes TW, Henning MA (in press) The Murty Simon Conjecture for bull-free graphs.
[30]
Haynes TW, Henning MA A characterization of P 5 -free, diameter-2-critical graphs. Submitted for publication.
[31]
Haynes TW, Henning MA, van der Merwe LC, Yeo A (2011) On a conjecture of Murty and Simon on diameter-2-critical graphs. Discret Math 311:1918-1924.
[32]
Haynes TW, Henning MA, van der Merwe LC, Yeo A A maximum degree theorem for diameter-2-critical graphs. Submitted for publication.
[33]
Haynes TW, Henning V, van der Merwe V, Yeo A A completion of three proofs related to the Murty-Simon Conjecture. Manuscript.
[34]
Haynes TW, Henning MA, Yeo A (2011) A proof of a conjecture on diameter two critical graphs whose complements are claw-free. Discret Optim 8:495-501.
[35]
Haynes TW, Henning MA, Yeo A (2012) On a conjecture of Murty and Simon on diameter two critical graphs II. Discret Math 312:315-323.
[36]
Haynes TW, Mynhardt CM, van der Merwe LC (1998) Criticality index of total domination. Congr Numerantium 131:67-73.
[37]
Haynes TW, Mynhardt CM, van der Merwe LC (1998) Total domination edge critical graphs. Util Math 54:229-240.
[38]
Haynes TW, Mynhardt CM, van der Merwe LC (2001) Total domination edge critical graphs with maximum diameter. Discuss Math Graph Theory 21:187-205.
[39]
Haynes TW, Mynhardt CM, van der Merwe LC (2003) Total domination edge critical graphs with minimum diameter. Ars Combin 66:79-96.
[40]
Henning MA (2009) Recent results on total domination in graphs: a survey. Discret Math 309:32-63.
[41]
Henning MA, Yeo A. Total domination in graphs (Springer Monographs in Mathematics) 2013. ISBN: 978-1-4614-6524-9 (Print) 978-1-4614-6525-6 (Online).
[42]
Krishnamoorthy V, Nandakumar R (1981) A class of counterexamples to a conjecture on diameter critical graphs. Combinatorics and Graph Theory, Lecture Notes in Mathematics, Springer, Berlin, pp 297-300.
[43]
Madden J (1999) Going critical: an investigation of diameter-critical graphs. M.Sc Degree. The University of Victoria Columbia.
[44]
Mantel W (1906) Problem 28. Wiskundige Opgaven 10:60-61.
[45]
Murty USR (1968) On critical graphs of diameter 2. Math Mag 41:138-140.
[46]
Plesník J (1975) Critical graphs of given diameter. Acta FRN Univ Comen Math 30:71-93.
[47]
Plesník J (1986) On minimal graphs of diameter 2 with every edge in a 3-cycle. Math Slovaca 36:145-149.
[48]
Turán P (1941) Eine Extremalaufgabe aus der Graphentheorie. Mat Fiz Lapok 48:436-452.
[49]
van der Merwe LC (2000) Total Domination Edge Critical Graphs. Ph.D. Dissertation, University of South Africa.
[50]
Wang P. On Murty-Simon Conjecture. Manuscript. http://arxiv.org/abs/1205.4397.
[51]
Wang T., Wang v, Yu Q. On Murty-Simon Conjecture II. Manuscript. http://arxiv.org/abs/1301.0460.
[52]
Xu J (1984) A proof of a conjecture of Simon and Murty (in Chinese). J Math Res Expo 4:85-86.

Cited By

View all
  1. Progress on the Murty---Simon Conjecture on diameter-2 critical graphs: a survey

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Journal of Combinatorial Optimization
    Journal of Combinatorial Optimization  Volume 30, Issue 3
    October 2015
    435 pages

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 October 2015

    Author Tags

    1. 05C69
    2. Diameter-2-critical
    3. Total domination
    4. Total domination edge-critical

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 06 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media