[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Intrinsic Polynomials for Regression on Riemannian Manifolds

Published: 01 September 2014 Publication History

Abstract

We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.

References

[1]
Bandulasiri, A., Gunathilaka, A., Patrangenaru, V., Ruymgaart, F., Thompson, H.: Nonparametric shape analysis methods in glaucoma detection. I. J. Stat. Sci. 9, 135---149 (2009)
[2]
Bookstein, F.L.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, Cambridge (1991)
[3]
Bou-Rabee, N.: Hamilton-Pontryagin integrators on Lie groups. Ph.D. thesis, California Institute of Technology (2007)
[4]
Bruveris, M., Gay-Balmaz, F., Holm, D., Ratiu, T.: The momentum map representation of images. J. Nonlinear Sci. 21(1), 115---150 (2011)
[5]
Burnham, K., Anderson, D.: Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York (2002)
[6]
Cates, J., Fletcher, P.T., Styner, M., Shenton, M., Whitaker, R.: Shape modeling and analysis with entropy-based particle systems. In: Proceedings of Information Processing in Medical Imaging (IPMI) (2007)
[7]
Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, vol. 365. AMS Bookstore, Providence (1975)
[8]
Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.C.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255---266 (2010)
[9]
do Carmo, M.P.: Riemannian Geometry, 1st edn. Birkhäuser, Boston (1992)
[10]
Driesen, N, Raz, N: The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis. Psychobiology (1995).
[11]
Dryden, I.L., Kume, A., Le, H., Wood, A.T.: A multi-dimensional scaling approach to shape analysis. Biometrika 95(4), 779---798 (2008)
[12]
Fletcher, PT: Geodesic regression and the theory of least squares on Riemannian manifolds. Int. J. Comput. Vis. (2012).
[13]
Fletcher, P.T., Liu, C., Pizer, S.M., Joshi, S.C.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995---1005 (2004)
[14]
Giambò, R., Giannoni, F., Piccione, P.: An analytical theory for Riemannian cubic polynomials. IMA J. Math. Control Inf. 19(4), 445---460 (2002)
[15]
Hinkle, J., Muralidharan, P., Fletcher, P.T., Joshi, S.C.: Polynomial regression on Riemannian manifolds. In: ECCV, Florence, Italy, vol. 3, pp. 1---14 (2012)
[16]
Holm, D.D., Marsden, J.E., Ratiu, T.S.: The Euler-Poincaré equations and semidirect products with applications to continuum theories. Adv. Math. 137, 1---81 (1998)
[17]
Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic principal component analysis for Riemannian manifolds modulo Lie group actions. Discussion paper with rejoinder. Stat. Sin. 20, 1---100 (2010)
[18]
Jupp, P.E., Kent, J.T.: Fitting smooth paths to spherical data. Appl. Stat. 36(1), 34---46 (1987)
[19]
Kendall, D.G.: Shape manifolds, procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81---121 (1984)
[20]
Kendall, D.G.: A survey of the statistical theory of shape. Stat. Sci. 4(2), 87---99 (1989)
[21]
Kenobi, K., Dryden, I.L., Le, H.: Shape curves and geodesic modelling. Biometrika 97(3), 567---584 (2010)
[22]
Kume, A., Dryden, I.L., Le, H.: Shape-space smoothing splines for planar landmark data. Biometrika 94(3), 513---528 (2007).
[23]
Le, H., Kendall, D.G.: The Riemannian structure of Euclidean shape spaces: a novel environment for statistics. Ann. Stat. 21(3), 1225---1271 (1993)
[24]
Silva Leite, F, Krakowski, K: Covariant differentiation under rolling maps. Departamento de Matemática, Universidade of Coimbra, Portugal (2008), No. 08-22, 1---8
[25]
Lewis, A., Murray, R.: Configuration controllability of simple mechanical control systems. SIAM J. Control Optim. 35(3), 766---790 (1997)
[26]
Machado, L., Leite, F.S., Krakowski, K.: Higher-order smoothing splines versus least squares problems on Riemannian manifolds. J. Dyn. Control Syst. 16(1), 121---148 (2010)
[27]
Marcus, D., Wang, T., Parker, J., Csernansky, J., Morris, J., Buckner, R.: Open access series of imaging studies (OASIS): cross-sectional MRI data in young, middle aged, nondemented, and demented older adults. J. Cogn. Neurosci. 19(9), 1498---1507 (2007)
[28]
Marsden, J., Ratiu, T.: Introduction to Mechanics and Symmetry: a Basic Exposition of Classical Mechanical Systems, vol. 17. Springer, Berlin (1999)
[29]
Micheli, M., Michor, P., Mumford, D.: Sectional curvature in terms of the cometric, with applications to the Riemannian manifolds of landmarks. SIAM J. Imaging Sci. 5(1), 394---433 (2012)
[30]
Miller, M.I., Trouvé, A., Younes, L.: Geodesic shooting for computational anatomy. J. Math. Imaging Vis. 24(2), 209---228 (2006).
[31]
Niethammer, M., Huang, Y., Vialard, F.X.: Geodesic regression for image time-series. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI) (2011)
[32]
Noakes, L., Heinzinger, G., Paden, B.: Cubic splines on curved surfaces. IMA J. Math. Control Inf. 6, 465---473 (1989)
[33]
O'Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13(4), 459---469 (1966)
[34]
Shi, X., Styner, M., Lieberman, J., Ibrahim, J.G., Lin, W., Zhu, H.: Intrinsic regression models for manifold-valued data. In: Medical Image Computing and Computer-Assisted Intervention--MICCAI 2009, pp. 192---199. Springer, Berlin (2009)
[35]
Singh, N., Wang, A., Sankaranarayanan, P., Fletcher, P., Joshi, S.: Genetic, structural and functional imaging biomarkers for early detection of conversion from MCI to AD. In: Proceedings of Medical Image Computing and Computer Assisted Intervention (MICCAI), pp. 132---140. Springer, Berlin (2012)
[36]
Turaga, P., Veeraraghavan, A., Srivastava, A., Chellappa, R.: Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition. IEEE Trans. Pattern Anal. Mach. Intell. 33(11), 2273---2286 (2011)
[37]
Vaillant, M., Glaunes, J.: Surface matching via currents. In: Information Processing in Medical Imaging, pp. 1---5. Springer, Berlin (2005)
[38]
Younes, L., Qiu, A., Winslow, R., Miller, M.: Transport of relational structures in groups of diffeomorphisms. J. Math. Imaging Vis. 32(1), 41---56 (2008)
[39]
Yushkevich, P.A., Piven, J., Cody Hazlett, H., Gimpel Smith, R., Ho, S., Gee, J.C., Gerig, G.: User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. NeuroImage 31(3), 1116---1128 (2006)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Mathematical Imaging and Vision
Journal of Mathematical Imaging and Vision  Volume 50, Issue 1-2
September 2014
177 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 September 2014

Author Tags

  1. Lie groups
  2. Polynomial
  3. Regression
  4. Riemannian geometry
  5. Rolling maps
  6. Shape space

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 02 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)De Casteljau's algorithm in geometric data analysisComputer Aided Geometric Design10.1016/j.cagd.2024.102288110:COnline publication date: 1-May-2024
  • (2023)Sasaki metric for spline models of manifold-valued trajectories▪Computer Aided Geometric Design10.1016/j.cagd.2023.102220104:COnline publication date: 1-Jul-2023
  • (2022)Time-varying spectral matrix estimation via intrinsic wavelet regression for surfaces of Hermitian positive definite matricesComputational Statistics & Data Analysis10.1016/j.csda.2022.107477174:COnline publication date: 1-Oct-2022
  • (2022)Robust Geodesic RegressionInternational Journal of Computer Vision10.1007/s11263-021-01561-w130:2(478-503)Online publication date: 1-Feb-2022
  • (2022)A Hierarchical Geodesic Model for Longitudinal Analysis on ManifoldsJournal of Mathematical Imaging and Vision10.1007/s10851-022-01079-x64:4(395-407)Online publication date: 1-May-2022
  • (2022)Low-rank multi-parametric covariance identificationBIT10.1007/s10543-021-00867-y62:1(221-249)Online publication date: 1-Mar-2022
  • (2021)An Optimization Method for Accurate Nonparametric Regressions on Stiefel ManifoldsMachine Learning, Optimization, and Data Science10.1007/978-3-030-95470-3_25(325-337)Online publication date: 4-Oct-2021
  • (2020)Geodesic Analysis in Kendall’s Shape Space with Epidemiological ApplicationsJournal of Mathematical Imaging and Vision10.1007/s10851-020-00945-w62:4(549-559)Online publication date: 1-May-2020
  • (2020)Nonlinear Regression on Manifolds for Shape Analysis using Intrinsic Bézier SplinesMedical Image Computing and Computer Assisted Intervention – MICCAI 202010.1007/978-3-030-59719-1_60(617-626)Online publication date: 4-Oct-2020
  • (2019)Multivariate Regression with Gross Errors on Manifold-Valued DataIEEE Transactions on Pattern Analysis and Machine Intelligence10.1109/TPAMI.2017.277626041:2(444-458)Online publication date: 1-Feb-2019
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media