[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Probabilistic Egomotion for Stereo Visual Odometry

Published: 01 February 2015 Publication History

Abstract

We present a novel approach of Stereo Visual Odometry for vehicles equipped with calibrated stereo cameras. We combine a dense probabilistic 5D egomotion estimation method with a sparse keypoint based stereo approach to provide high quality estimates of vehicle's angular and linear velocities. To validate our approach, we perform two sets of experiments with a well known benchmarking dataset. First, we assess the quality of the raw velocity estimates in comparison to classical pose estimation algorithms. Second, we added to our method's instantaneous velocity estimates a Kalman Filter and compare its performance with a well known open source stereo Visual Odometry library. The presented results compare favorably with state-of-the-art approaches, mainly in the estimation of the angular velocities, where significant improvements are achieved.

References

[1]
Alismail, H., Browning, B., Dias, M.B.: Evaluating pose estimation methods for stereo visual odometry on robots. In: Proceedings of the 11th International Conference on Intelligent Autonomous Systems (IAS-11) (2010)
[2]
Bonin-Font, F., Ortiz, A., Oliver, G.: Visual navigation for mobile robots: a survey. J. Intell. Robot. Syst. 53, 263---296 (2008)
[3]
Comport, A., Malis, E., Rives, P.: Real-time quadrifocal visual odometry. Int. J. Robot. Res. 29(2---3), 245---266 (2010)
[4]
Craig, J.J.: Introduction to Robotics: Mechanics and Control, 2nd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)
[5]
Domke, J., Aloimonos, Y.: A probabilistic notion of correspondence and the epipolar constraint. In: 3rd International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06), pp. 41---48. IEEE (2006)
[6]
Fischler, M.A., Bolles, R.C.: Random sample consensus a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381---395 (1981)
[7]
Goodall, C.: Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. Ser. B Methodol. 53(2), 285---339 (1991)
[8]
Harris, C., Stephens, M.: A combined corner and edge detection. In: Proceedings of the 4th Alvey Vision Conference, pp. 147---151 (1988)
[9]
Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press. ISBN: 0521540518 (2004)
[10]
Howard, A.: Real-time stereo visual odometry for autonomous ground vehicles. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3946---3952. IEEE (2008)
[11]
Huang, J., Zhu, T., Pan, X., Qin, L., Peng, X., Xiong, C., Fang, J.: A high-efficiency digital image correlation method based on a fast recursive scheme. Meas. Sci. Technol. 21(3) (2011)
[12]
Kai, N., Dellaert, F.: Stereo tracking and three-point/one-point algorithms - a robust approach. In: Visual Odometry, International Conference on Image Processing (ICIP), pp. 2777---2780 (2006)
[13]
Kazik, T., Kneip, L., Nikolic, J., Pollefeys, M., Siegwart, R.: Real-time 6d stereo visual odometry with non-overlapping fields of view. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1529---1536 (2012)
[14]
Kitt, B., Geiger, A., Lategahn, H.: Visual odometry based on stereo image sequences with ransac-based outlier rejection scheme. In: IEEE Intelligent Vehicles Symposium (IV), pp. 486---492. IEEE (2010)
[15]
Kneip, L., Chli, M., Siegwart, R.: Robust real-time visual odometry with a single camera and an imu. In: Proceedings of the British Machine Vision Conference (BMVC) (2011)
[16]
Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91---110 (2004)
[17]
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. pp. 674---679 (1981)
[18]
Maimone, M., Matthies, L., Cheng, Y.: Visual odometry on the Mars exploration rovers. In: IEEE International Conference on Systems, Man and Cybernetics, pp. 903---910. IEEE (2005)
[19]
Maimone, M., Matthies, L., Cheng, Y.: Two years of visual odometry on the mars exploration rovers: Field reports. J. Field Robot. 24(3) (2007)
[20]
Milella, A., Siegwart, R.: Stereo-based ego-motion estimation using pixel tracking and iterative closest point. In: IEEE International Conference on Computer Vision Systems, pp. 21 (2006)
[21]
Moreno, F., Blanco, J., González, J.: An efficient closed-form solution to probabilistic 6D visual odometry for a stereo camera. In: Proceedings of the 9th International Conference on Advanced Concepts for Intelligent Vision Systems, pp. 932---942. Springer-Verlag (2007)
[22]
Nelder, J.A., Mead, R.: A simplex method for function minimization. Comput. J. 7(4), 308---313 (1965).
[23]
Ni, K., Dellaert, F., Kaess, M.: Flow separation for fast and robust stereo odometry. In: IEEE International Conference on Robotics and Automation, ICRA 2009, vol. 1, pp. 3539---3544 (2009)
[24]
Nistér, D.: An efficient solution to the five-point relative pose problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 756---777 (2004)
[25]
Nistér, D., Naroditsky, O., Bergen, J.: Visual odometry for ground vehicle applications. J. Field Robot. 23(1), 3---20 (2006)
[26]
Obdrzalek, S., Matas, J.: A voting strategy for visual ego-motion from stereo. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 382---387
[27]
Olson, C., Matthies, L., Schoppers, M.: Maimone, M.: Rover navigation using stereo ego-motion. Robot. Auton. Syst. 43, 215---229 (2003)
[28]
Rehder, J., Gupta, K., Nuske, S.T., Singh, S.: Global pose estimation with limited gps and long range visual odometry. In: IEEE Conference on Robotics and Automation (2012)
[29]
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: 3rd International Conference on 3D Digital Imaging and Modeling (3DIM) (2001)
[30]
Scaramuzza, D., Fraundorfer, F.: Visual odometry tutorial, part i. Robot. Autom. Mag. IEEE 18(4), 80---92 (2011)
[31]
Silva, H., Bernardino, A., Silva, E.: Combining sparse and dense methods for 6d visual odometry. In: 13th IEEE International Conference on Autonomous Robot Systems and Competitions. Lisbon (2013)
[32]
Zhang, Z., Deriche, R., Faugeras, O., Luong, Q.T.: A robust technique for matching two uncalibrated images through the recovery of the unknown epipolar geometry. Artif. Intell. Spec. Vol. Comp. Vis. 78(2), 87---119 (1995)

Cited By

View all
  • (2023)Improving visual odometry pipeline with feedback from forward and backward motion estimatesMachine Vision and Applications10.1007/s00138-023-01370-w34:2Online publication date: 27-Jan-2023

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Intelligent and Robotic Systems
Journal of Intelligent and Robotic Systems  Volume 77, Issue 2
February 2015
159 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 February 2015

Author Tags

  1. Egomotion
  2. Stereo vision
  3. Visual Navigation
  4. Visual Odometry

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 14 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Improving visual odometry pipeline with feedback from forward and backward motion estimatesMachine Vision and Applications10.1007/s00138-023-01370-w34:2Online publication date: 27-Jan-2023

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media