[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Quantum-inspired evolutionary algorithms: a survey and empirical study

Published: 01 June 2011 Publication History

Abstract

Quantum-inspired evolutionary algorithms, one of the three main research areas related to the complex interaction between quantum computing and evolutionary algorithms, are receiving renewed attention. A quantum-inspired evolutionary algorithm is a new evolutionary algorithm for a classical computer rather than for quantum mechanical hardware. This paper provides a unified framework and a comprehensive survey of recent work in this rapidly growing field. After introducing of the main concepts behind quantum-inspired evolutionary algorithms, we present the key ideas related to the multitude of quantum-inspired evolutionary algorithms, sketch the differences between them, survey theoretical developments and applications that range from combinatorial optimizations to numerical optimizations, and compare the advantages and limitations of these various methods. Finally, a small comparative study is conducted to evaluate the performances of different types of quantum-inspired evolutionary algorithms and conclusions are drawn about some of the most promising future research developments in this area.

References

[1]
Abdesslem, L., Soham, M., Mohamed, B.: Multiple sequence alignment by quantum genetic algorithm. In: Proc. IPDPS, pp. 360-367 (2006).
[2]
Abs da Cruz, A., Hall Barbosa, C., Pacheco, M., Vellasco, M.: Quantum-inspired evolutionary algorithms and its application to numerical optimization problems. Lect. Not. Comput. Sci. 3316 , 212-217 (2004).
[3]
Abs da Cruz, A., Pacheco, M., Vellasco, M., Barbosa, C.: Cultural operators for a quantum-inspired evolutionary algorithm applied to numerical optimization problems. Lect. Not. Comput. Sci. 3562 , 1-10 (2005).
[4]
Abs da Cruz, A., Vellasco, M., Pacheco, M.: Quantum-inspired evolutionary algorithm for numerical optimization. In: Proc. CEC, pp. 2630-2637 (2006).
[5]
Abs da Cruz, A., Vellasco, M., Pacheco, M.: Quantum-inspired evolutionary algorithm for numerical optimization. In: Studies in Computational Intelligence, vol. 75, pp. 19-37 (2007).
[6]
Akbarzadeh-T, M.: Evolutionary quantum algorithms for structural design. In: Proc. IEEE SMC vol. 4, pp. 3077-3082 (2005).
[7]
Al-Othman, A., Al-Fares, F., EL-Nagger, K.: Power system security constrained economic dispatch using real coded quantum inspired evolution algorithm. Int. J. Electr. Comput. Syst. Eng 1 (4), 199-206 (2007).
[8]
Alfares, F., Esat, I.: Real-coded quantum inspired evolution algorithm applied to engineering optimization problems. In: Proc. ISoLA, pp. 169-176 (2006).
[9]
Alfares, F., Alfares, M., Esat, I.: Quantum-inspired evolution algorithm: experimental analysis. In: Proc. ACDM, pp. 377-389 (2004).
[10]
Araujo, M., Nedjah, N., Mourelle, L.: Quantum-inspired evolutionary state assignment for synchronous finite state machines. J. Univers. Comput. Sci. 14 (15), 2532-2548 (2008).
[11]
Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size. In: Proc. CEC, pp. 1769-1776 (2005).
[12]
Bäck, T., Hammel, U., Schwefel, H.: Evolutionary computation: comments on the history and current state. IEEE Trans. Evol. Comput. 1 (2), 3-17 (1997).
[13]
Baluja, S.: Population based incremental learning: a method for integrating genetic search based function optimization and competitive learning. Technical Report No. CMU-CS-94-163. Carnegie Mellon University, Pittsburgh, Pennsylvania (1994).
[14]
Baluja, S., Davies, S.: Using optimal dependency trees for combinatorial optimization: Learning the structure of search space. Technical Report CMU-CS-97-107. Carnegie Mellon University, Pittsburgh, Pennsylvania (1997).
[15]
Barenco, A., Bennett, C., Cleve, R., Divincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52 (5), 3457-3467 (1995).
[16]
Bennett, C., DiVincenzo, D.: Quantum information and computation. Nature 404 , 247-255 (2000).
[17]
Bi, X., Jin, G.: Image segmentation algorithm based on quantum immune programming. In: Proc IEEE ICIT, pp. 403-407 (2007).
[18]
Box, G.: Evolutionary operation: a method for increasing industrial productivity. Appl. Stat. 6 , 81-101 (1957).
[19]
Bremermann, H.: Optimization through evolution and recombination. In: Yovits MC (ed) Self-Organizing Systems, Spartan, Washington DC (1962).
[20]
Burian, R.: Underappreciated pathways toward molecular genetics as illustrated by Jean Brachet's cytochemical embryology. In: Sarkar, S. (ed.) The Philosophy and History of Molecular Biology: New Perspectives, pp. 67-85. Kluwer, Dordrecht (1996).
[21]
Chaiyaratana, N., Piroonratana, T., Sangkawelert, N.: Effects of diversity control in single objective and multi-objective genetic algorithms. J. Heuristics 13 (1), 1-34 (2007).
[22]
Chen, H., Zhang, J., Zhang, C.: Chaos updating rotated gates quantum-inspired genetic algorithm. In: Proc. ICCCAS, pp. 1108-1112 (2004).
[23]
Collingwood, E., Corne, D., Ross, P.: Useful diversity via multiploidy. In: Proc. CEC, pp. 810-813 (1996).
[24]
Corne, D., Collingwood, E., Ross, P.: Investigating multiploidy's niche. Lect. Not. Comput. Sci. 1143 , 189-198 (1996).
[25]
Darwin, C.: On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Murray, London (1859).
[26]
De Bonet, J., Isbell, C., Viola, P.: Mimic: Finding optima by estimating probability densities. In: NIPS. MIT Press, Cambridge (1997).
[27]
Deb, K., Anand, A., Joshi, D.: A computationally efficient evolutionary algorithm for real-parameter optimization. Evol. Comput. 10 , 371-395 (2002).
[28]
Ding, S., Jin, Z., Yang, Q.: Evolving quantum circuits at the gate level with a hybrid quantum-inspired evolutionary algorithm. Soft Comput. 12 (11), 1059-1072 (2008).
[29]
DiVincenzo, D.: Quantum gates and circuits. Proc. R. Soc. A, Math. Phys. Eng. Sci. 454 , 261-276 (1998).
[30]
Du, J., Tian, Y., Zuo, M., Zhou, Y.: Using quantum immune clone algorithm in the prediction of tourism emergency events. In: Proc. ICCAS, pp. 2519-2522 (2007).
[31]
Eddy, S.: Infernal: inference of RNA alignments. http://www.fli-leibniz.de/RNA.html, the RNA World Website (2009).
[32]
Eshelman, L.: The CHC adaptive search algorithm: how to have safe search when engaging in nontraditional genetic recombination. In: Rawlin, S.M.G.J.E. (ed.) Foundations of Genetic Algorithms, pp. 265-283. Morgan Kaufmann, San Mateo (1991).
[33]
Fan, K., Brabazon, A., O'Sullivan, C., O'Neill, M.: Option pricing model calibration using a real-valued quantum-inspired evolutionary algorithm. In: Proc. GECCO, pp. 1983-1990 (2007).
[34]
Feng, X., Wang, Y., Ge, H., Zhou, C., Liang, Y.: Quantum-inspired evolutionary algorithm for travelling salesman problem. Comput. Methods, 1363-1367 (2006).
[35]
Fogel, L., Owens, A., Walsh, M.: Artificial Intelligence Through Simulated Evolution. Wiley, New York (1966).
[36]
Fraser, A.: Simulation of genetic systems by automatic digital computers. Aust. J. Biol. Sci. 10 , 484-491 (1957).
[37]
Friedberg, R.: A learning machine: Part i. IBM J. Res. Dev. 2 , 2-13 (1958).
[38]
Friedberg, R., Dunham, B., North, J.: A learning machine: Part ii. IBM J. Res. Dev. 3 , 282-287 (1959).
[39]
Ganesh, V., Singhal, G.: Quantum-inspired evolutionary algorithms and binary particle swarm optimization for training MLP and SRN neural networks. J. Comput. Theor. Nanosci. 2 (4), 561-568 (2005).
[40]
Gao, H., Xu, G., Wang, Z.: A novel quantum evolutionary algorithm and its application. In: Proc. WCICA, pp. 3638-3642 (2006).
[41]
Garcia, S., Molina, D., Lozano, M., Herrera, F.: A study on the use of non-parametric tests for analyzing the evolutionary algorithms' behaviour: a case study on the CEC'2005 special session on real parameter optimization. J. Heuristics 15 (6), 617-644 (2009).
[42]
Gardner, P., Wilm, A., Washietl, S.: A benchmark of multiple sequence alignment programs upon structural RNAs. Nucleic Acids Res. 33 , 2433-2439 (2005).
[43]
Glassner, A.: Quantum computing, part 2. IEEE Comput. Graph. Appl. 86-95 (2001a).
[44]
Glassner, A.: Quantum computing, part 3. IEEE Comput. Graph. Appl. 73-82 (2001b).
[45]
Goldberg, D.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley/Longman, Boston (1989).
[46]
Grigorenko, I., Garcia, M.: Ground-state wave functions of two-particle systems determined using quantum genetic algorithms. Physica A, Stat. Mech. Its Appl. 291 (1-4), 439-448 (2001).
[47]
Grigorenko, I., Garcia, M.: Calculation of the partition function using quantum genetic algorithms. Physica A, Stat. Mech. Its Appl. 313 (3-4), 463-470 (2002).
[48]
Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79 (2), 325-328 (1997).
[49]
Grover, L.: Quantum computation. In: Proc. VLSI Design, pp. 548-553 (1999).
[50]
Gu, J., Gu, M., Cao, C., Gu, X.: A novel competitive co-evolutionary quantum genetic algorithm for stochastic job shop scheduling problem. Comput. Oper. Res. 37 (5), 927-937 (2009a).
[51]
Gu, J., Gu, X., Gu, M.: A novel parallel quantum genetic algorithm for stochastic job shop scheduling. J. Math. Anal. Appl. 355 (1), 63-81 (2009b).
[52]
Guo, R., Li, B., Zou, Y., Zhuang, Z.: Hybrid quantum probabilistic coding genetic algorithm for large scale hardware-software co-synthesis of embedded systems. In: Proc. CEC, pp. 3454-3458 (2007).
[53]
Han, K., Kim, J.: Genetic quantum algorithm and its application to combinatorial optimization problem. In: Proc. CEC, vol. 2, pp. 1354-1360 (2000).
[54]
Han, K., Kim, J.: Quantum-inspired evolutionary algorithm for a class of combinatorial optimization. IEEE Trans. Evol. Comput. 6 (6), 580-593 (2002).
[55]
Han, K., Kim, J.: On setting the parameters of QEA for practical applications: Some guidelines based on empirical evidence. Lect. Not. Comput. Sci. 2723 , 427-428 (2003a).
[56]
Han, K., Kim, J.: On setting the parameters of quantum-inspired evolutionary algorithm for practical application. In: Proc. CEC, pp. 178-184 (2003b).
[57]
Han, K., Kim, J.: Quantum-inspired evolutionary algorithms with a new termination criterion, h-epsilon gate, and two-phase scheme. IEEE Trans. Evol. Comput. 8 (2), 156-169 (2004).
[58]
Han, K., Kim, J.: On the analysis of the quantum-inspired evolutionary algorithm with a single individual. In: Proc. CEC, pp. 2622-2629 (2006).
[59]
Han, K., Park, K., Lee, C., Kim, J.: Parallel quantum-inspired genetic algorithm for combinatorial optimization problem. In: Proc. CEC, vol. 2, pp. 1422-1429 (2001).
[60]
Harik, G.: Linkage learning via probabilistic modeling in the ECGA. Tech. Rep., Illinois Genetic Algorithm Laboratory, University of Illinois, Urbana, Illinois (1999).
[61]
Harik, G.R., Lobo, F.G., Goldberg, DE: The compact genetic algorithm. In: Proc. EC, pp. 523-528 (1998).
[62]
Herrera, F., Lozano, M.: Adaptation of genetic algorithm parameters based on fuzzy logic controllers. In: Genetic Algorithms and Soft Comput., pp. 95-125. Physica-Verlag, Heidelberg (1996).
[63]
Herrera, F., Lozano, M., Verdegay, J.L.: Tackling real-coded genetic algorithms: operators and tools for the behavioral analysis. Artif. Intell. Rev. 12 (4), 265-319 (1998).
[64]
Herrera, F., Lozano, M., Sanchez, A.M.: A taxonomy for the crossover operator for real-coded genetic algorithms: An experimental study. Int. J. Intell. Syst. 18 (3), 309-338 (2003).
[65]
Hey, T.: Quantum computing: an introduction. Comput. Control Eng. J. 10 (3), 105-112 (1999).
[66]
Hinterding, R.: Representation, constraint satisfaction and the knapsack problem. In: Proc. CEC, pp. 1286-1292 (1999).
[67]
Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975).
[68]
Huang, Y., Tang, C., Wang, S.: Quantum-inspired swarm evolution algorithm. In: Proc. CISW, pp. 208-211 (2007).
[69]
Huo, H., Stojkovic, V.: Two-phase quantum based evolutionary algorithm for multiple sequence alignments. In: Proc. ICCIAS, pp. 374-379 (2006).
[70]
Huo, H., Stojkovic, V.: Two-phase quantum based evolutionary algorithm for multiple sequence alignment. In: Lecture Notes in Artificial Intelligence, vol. 4456, pp. 11-21 (2007).
[71]
Imabeppu, T., Nakayama, S., Ono, S.: A study on a quantum-inspired evolutionary algorithm based on pair swap. Artif. Life Robot. 12 (1), 148-152 (2008).
[72]
Jang, J.S., Han, K.H., Kim, J.H.: Quantum-inspired evolutionary algorithm-based face verification. In: Lecture Notes in Computer Science, vol. 2724, pp. 2147-2156 (2003).
[73]
Jang, J.S., Han, K.H., Kim, J.H.: Evolutionary algorithm-based face verification. Pattern Recognit. Lett. 25 (16), 1857-1865 (2004a).
[74]
Jang, J.S., Han, K.H., Kim, J.H.: Face detection using quantum-inspired evolutionary algorithm. In: Proc. CEC, pp. 2100-2106 (2004b).
[75]
Jang, S.H., Jung, Y.W., Kim, W., Shin, J.R., Park, J.B.: A thermal unit commitment approach based on a bounded quantum evolutionary algorithm. Trans. Korean Inst. Electr. Eng. 58 (6), 1057-1064 (2009).
[76]
Jeong, Y.W., Park, J.B., Shin, J.R., Lee, K.Y.: A thermal unit commitment approach using an improved quantum evolutionary algorithm. Electr. Power Compon. Syst. 37 (7), 770-786 (2009).
[77]
Jiao, L., Li, Y.: Quantum-inspired immune clonal optimization. In: Proc. ICNN&B, pp. 461-468 (2005).
[78]
Jiao, L., Li, Y., Gong, M., Zhang, X.: Quantum-inspired immune clonal algorithm for global optimization. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 38 (5), 1234-1253 (2008).
[79]
John, V., John, P.: Reactive power and voltage control based on general quantum genetic algorithms. Expert Syst. Appl. 36 (3), 6118-6126 (2009).
[80]
Kent, A., Williams, J.G.: Encyclopedia of Computer Science and Technology. CRC Press, Boca Raton (1999).
[81]
Khorsand, A.: Quantum gate optimization in a meta-level genetic quantum algorithm. In: Proc. IEEE SMC, pp. 3055-3062 (2005).
[82]
Khorsand, A.: Genetic quantum algorithm for voltage and pattern design of piezoelectric actuator. In: Proc. CEC, pp. 2593-2600 (2006).
[83]
Kim, K.H., Hwang, J.Y., Han, K.H., Kim, J.H., Park, K.H.: A quantum-inspired evolutionary computing algorithm for disk allocation method. IEICE Trans. Inf. Syst. E86D (3), 645-649 (2003).
[84]
Kim, Y., Kim, J.H., Han, K.H.: Quantum-inspired multiobjective evolutionary algorithm for multiobjective 0/1 knapsack problems. In: Proc. CEC, pp. 2601-2606 (2006).
[85]
Koumousis, V.K., Katsaras, C.P.: A saw-tooth genetic algorithm combining the effects of variable population size and reinitialization to enhance performance. IEEE Trans. Evol. Comput. 10 (1), 19-27 (2006).
[86]
Koza, J.R., Al-Sakran, S.H., Jones, L.W.: Cross-domain features of runs of genetic programming used to evolve designs for analog circuits, optical lens systems, controllers, antennas, mechanical systems, and quantum computing circuits. In: Proc NASA/DoD EH, pp. 205-212 (2005).
[87]
Larra¿aga, P., Etxeberria, R., Lozano, J.A., Peña, J.M.: Combinatorial optimization by learning and simulation of bayesian networks. In: Proc. UAI, pp. 343-352 (2000).
[88]
Lau, T.W., Chung, C.Y., Wong, K.P., Chung, T.S., Ho, S.L.: Quantum-inspired evolutionary algorithm approach for unit commitment. IEEE Trans. Power Syst. 24 (3), 1503-1512 (2009).
[89]
Li, B., Zhuang, Z.: Genetic algorithm based-on the quantum probability representation. In: Lecture Notes in Computer Science, vol. 2412, pp. 79-95 (2002).
[90]
Li, B.B., Wang, L.: A hybrid quantum-inspired genetic algorithm for multi-objective scheduling. In: Lecture Notes in Computer Science, vol. 4113, pp. 511-522 (2006).
[91]
Li, B.B., Wang, L.: A hybrid quantum-inspired genetic algorithm for multiobjective flow shop scheduling. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 37 (3), 576-591 (2007).
[92]
Li, N., Du, P., Zhao, H.J.: Independent component analysis based on improved quantum genetic algorithm: Application in hyperspectral images. In: Proc. IGARSS, pp. 4323-4326 (2005a).
[93]
Li, P., Li, S.: Quantum-inspired evolutionary algorithm for continuous space optimization based on Bloch coordinates of qubits. Neurocomputing 72 (1-3), 581-591 (2008).
[94]
Li, Y., Jiao, L.: Quantum-inspired immune clonal algorithm. In: Lecture Notes in Computer Science, vol. 3627, pp. 304-317 (2005).
[95]
Li, Y., Jiao, L.: Quantum-inspired immune clonal multiobjective optimization algorithm. In: Lecture Notes in Artificial Intelligence, vol. 4426, pp. 672-679 (2007).
[96]
Li, Y., Liu, F.: A novel immune clonal algorithm. In: Lecture Notes in Computer Science, vol. 4222, pp. 31-40 (2006).
[97]
Li, Y., Jiao, L., Liu, F.: Self-adaptive chaos quantum clonal evolutionary programming. In: Proc. ICSP, vol. 2, pp. 1550-1553 (2004a).
[98]
Li, Y., Zhang, Y.N., Zhao, R.C., Jiao, L.C.: An edge detector based on parallel quantum-inspired evolutionary algorithm. In: Proc. ICMLC, pp. 4062-4066.
[99]
Li, Y., Zhang, Y.N., Zhao, R.C., Jiao, L.C.: The immune quantum-inspired evolutionary algorithm. In: Proc. IEEE ICSMC, pp. 3301-3305 (2004c).
[100]
Li, Y., Zhang, Y., Cheng, Y., Jiang, X., Zhao, R.: A novel immune quantum-inspired genetic algorithm. In: Lecture Notes in Computer Science, vol. 3612, pp. 215-218 (2005b).
[101]
Li, Y., Jiao, L., Gou, S.: Quantum-inspired immune clonal algorithm for multiuser detection in DS-CDMA systems. In: Lecture Notes in Computer Science, vol. 4247, pp. 80-87 (2006).
[102]
Li, Y.Y., Jiao, L.C.: Quantum-inspired immune clonal algorithm and its application. In: Proc. ISPACS, pp. 670-673 (2008).
[103]
Li, Z., Rudolph, G., Li, K.: Convergence performance comparison of quantum-inspired multi-objective evolutionary algorithms. Comput. Math. Appl. 57 (11-12), 1843-1854 (2009).
[104]
Liu, F., Li, S.Q., Liang, M., Hu, L.Z.: Wideband signal DOA estimation based on modified quantum genetic algorithm. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E89A (3), 648-653 (2006).
[105]
Liu, H., Zhang, D., Yan, J.Q., Li, Z.S.: Fast and robust portrait segmentation using QEA and histogram peak distribution methods. In: Lecture Notes in Computer Science, vol. 3645, pp. 920-928 (2005).
[106]
Liu, H., Zhang, G., Liu, C., Fang, C.: A novel memetic algorithm based on real-observation quantum-inspired evolutionary algorithms. In: Proc. ISKE, pp. 486-490 (2008).
[107]
Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. Evol. Comput. 12 (3), 273-302 (2004).
[108]
Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to maintain useful diversity in steady-state genetic algorithms. In: Soft Computing: Methodology and Applications. Springer, Berlin (2005).
[109]
Lozano, M., Herrera, F., Cano, J.R.: Replacement strategies to preserve useful diversity in steady-state genetic algorithms. Inf. Sci. 178 (23), 4421-4433 (2008).
[110]
Lu, T.C., Juang, J.C., Yu, G.R.: On-line outliers detection by neural network with quantum evolutionary algorithm. In: Proc ICICIC, pp. 254-257 (2008).
[111]
Luo, Z., Wang, P., Li, Y., Zhang, W., Tang, W., Xiang, M.: Quantum-inspired evolutionary tuning of SVM parameters. Progr. Nat. Sci. 18 (4), 475-480 (2008).
[112]
Lv, Y.J., Liu, N.X.: Application of quantum genetic algorithm on finding minimal reduct. In: Proc. GrC, pp. 728-733 (2007).
[113]
Malossini, A., Blanzieri, E., Calarco, T.: QGA: a quantum genetic algorithm. Technical Report No. DIT- 04-105, Informatica e Telecommunicazioni, University of Trento (2004).
[114]
Malossini, A., Blanzieri, E., Calarco, T.: Quantum genetic optimization. IEEE Trans. Evol. Comput. 12 (2), 231-241 (2008).
[115]
Martinez, A., Benavente, R.: The AR face database. http://rvl1.ecn.purdue.edu/~aleix/aleixfaceDB.html (1998).
[116]
Meshoul, S., Layeb, A., Batouche, M.: A quantum evolutionary algorithm for effective multiple sequence alignment. In: Lecture Notes in Artificial Intelligence, vol. 3808, pp. 260-271 (2005a).
[117]
Meshoul, S., Mahdi, K., Batouche, M.: A quantum inspired evolutionary framework for multi-objective optimization. In: Lecture Notes in Artificial Intelligence, vol. 3808, pp. 190-201 (2005b).
[118]
Moore, M., Narayanan, A.: Quantum-inspired computing. Technical Report, Department of Computer Science, University Exeter, Exeter, UK (1995).
[119]
Mühlenbein, H., Mahnig, T.: The equation for response to selection and its use for prediction. Evol. Comput. 5 (3), 303-346 (1998).
[120]
Mühlenbein, H., Mahnig, T.: The factorized distribution algorithm for additively decomposed functions. In: Proc. CEC, pp. 752-759 (1999).
[121]
Narayanan, A.: Quantum computing for beginners. In: Proc. CEC, pp. 2231-2238 (1999).
[122]
Narayanan, A., Moore, M.: Quantum-inspired genetic algorithms. In: Proc. CEC, pp. 61-66 (1996).
[123]
Nielsen, A.M., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000).
[124]
Niu, Q., Zhou, T., Ma, S.: A quantum-inspired immune algorithm for hybrid flow shop with makespan criterion. J. Univers. Comput. Sci. 15 (4), 765-785 (2009).
[125]
Noman, N., Iba, H.: Accelerating differential evolution using an adaptive local search. IEEE Trans. Evol. Comput. 12 (1), 107-125 (2008).
[126]
Notredame, C., Holm, L., Higgins, D.: Coffee: an objective functions for multiple sequence alignments. Bioinformatics 14 , 407-422 (1998).
[127]
Pan, G.F., Xia, K.W., Dong, Y., Shi, J.: An improved LS-SVM based on quantum PSO algorithm and its application. In: Proc. ICNC, pp. 606-610 (2007).
[128]
Pelikan, M., Mühlenbein, H.: The bivariate marginal distribution algorithm. In: Advances in Soft Computing--Engineering Design and Manufacturing, pp. 521-535 (1999).
[129]
Pelikan, M., Goldberg, D., Cantú-paz, E.: Linkage problem, distribution estimation and bayesian networks. Evol. Comput. 8 (3), 311-340 (2000).
[130]
Pelikan, M., Goldberg, D., Lobo, F.G.: A survey of optimization by building and using probabilistic models. Comput. Optim. Appl. 21 , 5-20 (2002).
[131]
Platel, M., Schliebs, S., Kasabov, N.: Quantum-inspired evolutionary algorithm: A multimodel EDA. IEEE Trans. Evol. Comput. 13 (6), 1218-1232 (2009).
[132]
Platelt, M.D., Schliebs, S., Kasabov, N.: A versatile quantum-inspired evolutionary algorithm. In: Proc. CEC, pp. 423-430 (2007).
[133]
Pötz, W., Fabian, J. (eds.) Quantum Coherence: from Quarks to Solids. Springer, Berlin (2006).
[134]
Price, K., Storn, R.M., Lampinen, JA: Differential Evolution: A Practical Approach to Global Optimization. Springer, Berlin (2005).
[135]
Qin, C., Zheng, J., Lai, J.: A multiagent quantum evolutionary algorithm for global numerical optimization. In: LNBI, vol. 4689, pp. 380-389 (2007).
[136]
Rechenberg, I.: Evolutionsstrategie: Optimierung technischer Systemenach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart (1973).
[137]
Ruiz, F.: MCDM numerical instances library. http://www.univ-valencienne.fr/ROAD/MCDM, international Society on Multiple Criteria Decision Making (2009).
[138]
Rylander, B., Soule, T., Foster, J., Alves-Foss, J.: Quantum genetic algorithms. In: Proc. GECCO, pp. 373- 377 (2000).
[139]
Sahin, M., Tomak, M.: The self-consistent calculation of a spherical quantum dot: a quantum genetic algorithm study. Physica E, Low-Dimens. Syst. Nanostruct.
[140]
Sahin, M., Atav, U., Tomak, M.: Quantum genetic algorithm method in self-consistent electronic structure calculations of a quantum dot with many electrons. Int. J. Mod. Phys. C 16 (9), 1379-1393 (2005).
[141]
Sailesh Babu, G.S., Bhagwan Das, D., Patvardhan, C.: Real-parameter quantum evolutionary algorithm for economic load dispatch. IET Gener. Transm. Distrib. 2 (1), 22-31 (2008).
[142]
Santana, R., Lozano, J., Larrañaga, P.: Protein folding in simplified models with estimation of distribution algorithms. IEEE Trans. Evol. Comput. 12 (4), 418-438 (2008).
[143]
Schwefel, H.P.: Evolutionsstrategie und numerische optimierung. PhD dissertation, Technische Berlin, Germany (1975).
[144]
Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proc. SFCS, pp. 124-134 (1994).
[145]
Shu, W.N.: Optimal resource allocation on grid computing using a quantum chromosomes genetic algorithm. In: Proc. DMAMH, pp. 254-257 (2007).
[146]
Shu, W.N., He, B.J.: A quantum genetic simulated annealing algorithm for task scheduling. In: Lecture Notes in Computer Science, vol. 4683, pp. 169-176 (2007).
[147]
Sofge, D.A.: Toward a framework for quantum evolutionary computation. In: Proc. CIS, pp. 789-794 (2006).
[148]
Spector, L., Barnum, H., Bernstein, H.: Genetic programming for quantum computers. In: Proc. GP, pp. 365-373 (1998).
[149]
Spector, L., Barnum, H., Bernstein, H., Swamy, J.N.: Finding a better-than-classical quantum and/or algorithm using genetic programming. In: Proc. CEC, pp. 2239-2246 (1999).
[150]
Srinivas, M., Patnaik, L.M.: Genetic algorithms: a survey. Computer 27 , 17-26 (1994).
[151]
Su, H., Yang, Y., Zhao, L.: Classification rule discovery with DE QDE algorithm. Expert Syst. Appl. 37 (2), 1216-1222 (2010).
[152]
Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P., Auger, A., Tiwari, S.: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization. Technical report, Nanyang Technological University (2005).
[153]
Talbi, H., Batouche, M., Draa, A.: A quantum-inspired genetic algorithm for multi-source affine image registration. In: Lecture Notes in Computer Science, vol. 3211, pp. 147-154 (2004a).
[154]
Talbi, H., Draa, A., Batouche, M.: A new quantum-inspired genetic algorithm for solving the travelling salesman problem. In: Proc ICIT, pp. 1192-1197 (2004b).
[155]
Talbi, H., Draa, A., Batouche, M.C.: A genetic quantum algorithm for image registration. In: Proc. ICTTA, pp. 395-396 (2004c).
[156]
Thompson, J.D., Plewniak, F., Poch, O.: Balibase: A benchmark alignment database for the evaluation of multiple alignment programs. Bioinformatics 15 , 87-88 (1999).
[157]
Udrescu, M., Prodan, L., Vladutiu, M.: Implementing quantum genetic algorithms: a solution based on Grover's algorithm. In: Proc. CF, pp. 14-16 (2006).
[158]
Vlachoglannis, J.G.: Quantum-inspired evolutionary algorithm for real and reactive power dispatch. IEEE Trans. Power Syst. 23 (4), 1627-1636 (2008).
[159]
Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. J. Comput. Biol. 1 , 337-348 (1994).
[160]
Wang, L., Li, L.P.: An effective hybrid quantum-inspired evolutionary algorithm for parameter estimation of chaotic systems. Expert Syst. Appl. 37 (2), 1279-1285 (2010).
[161]
Wang, L., Tang, F., Wu, H.: Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation. Appl. Math. Comput. 171 (2), 1141-1156 (2005a).
[162]
Wang, L., Wu, H., Tang, F., Zheng, D.Z.: A hybrid quantum-inspired genetic algorithm for flow shop scheduling. In: Lecture Notes in Computer Science, vol. 3645, pp. 636-644 (2005b).
[163]
Wang, L., Wu, H., Zheng, D.Z.: A quantum-inspired genetic algorithm for scheduling problems. In: Lecture Notes in Computer Science, vol. 3612, pp. 417-423 (2005c).
[164]
Wang, L., Niu, Q., Fei, M.R.: A novel quantum ant colony optimization algorithm. In: Lecture Notes in Computer Science, vol. 4688, pp. 277-286 (2007a).
[165]
Wang, X.H., Ying, Y., Xiao, J.M.: Application of quantum genetic algorithm in logistics distribution planning. In: Proc. CCC, pp. 759-762 (2007b).
[166]
Wang, Y., Feng, X.Y., Huang, Y.X., Zhou, W.G., Liang, Y.C., Zhou, C.G.: A novel quantum swarm evolutionary algorithm for solving 0-1 knapsack problem. In: Lecture Notes in Computer Science, vol. 3611, pp. 698-704 (2005d).
[167]
Wang, Y., Feng, X.Y., Huang, Y.X., Pu, D.B., Zhou, W.G., Liang, Y.C., Zhou, C.G.: A novel quantum swarm evolutionary algorithm and its applications. Neurocomputing 70 (4-6), 633-640 (2007c).
[168]
Wei, W., Li, B., Zou, Y., Zhang, W., Zhuang, Z.: A multi-objective HW-SW co-synthesis algorithm based on quantum-inspired evolutionary algorithm. Int. J. Comput. Intell. Appl. 7 (2), 129-148 (2008).
[169]
Whitley, D., Rana, S., Dzubera, J., Mathias, E.: Evaluating evolutionary algorithms. Artif. Intell. Rev. 85 , 245-276 (1996).
[170]
Wu, Q., Jiao, L., Li, Y., Deng, X.: A novel quantum-inspired immune clonal algorithm with the evolutionary game approach. Progr. Nat. Sci. 19 (10), 1341-1347 (2009).
[171]
Xiao, W.X., Zang, X., Yan, X.P.: QGA based bandwidth adaptation scheme for wireless/mobile networks. In: Proc. ITST, pp. 1323-1326 (2006).
[172]
Xing, H., Ji, Y., Bai, L., Liu, X., Qu, Z., Wang, X.: An adaptive-evolution-based quantum-inspired evolutionary algorithm for QOS multicasting in IP/DWDM networks. Comput. Commun. 32 (6), 1086-1094 (2009a).
[173]
Xing, H., Liu, X., Jin, X., Bai, L., Ji, Y.: A multi-granularity evolution based quantum genetic algorithm for QOS multicast routing problem in WDM networks. Comput. Commun. 32 (2), 386-393 (2009b).
[174]
Xu, J.J., Chen, H.J., Cheng, Y.H., Luo, R.: Blind signal separation based on quantum genetic algorithm. J. Commun. Comput. 2 (9), 62-66 (2005).
[175]
Yang, J.A., Li, Z.Q., Zhuang, Z.Q.: Multi-universe parallel quantum genetic algorithm and its application to blind source separation. In: Proc. ICNNS, pp. 393-398 (2003a).
[176]
Yang, J.A., Peng, H., Zhuang, Z.Q.: Research of nonlinear blind source separation algorithm based on quantum evolutionary neural network. In: Proc. ICMLC, pp. 835-840 (2003b).
[177]
Yang, J.A., Zhao, B., Ye, Z.F.: Research of blind deconvolution algorithm based on high-order statistics and quantum inspired GA. In: Lecture Notes in Computer Science, vol. 3611, pp. 461-467 (2005).
[178]
Yang, Q., Ding, S.C.: Methodology and case study of hybrid quantum-inspired evolutionary algorithm for numerical optimization. In: Proc. ICNC, pp. 634-638 (2007).
[179]
Yang, S.Y., Jiao, L.C.: The quantum evolutionary programming. In: Proc. ICCIMA, pp. 362-367 (2003).
[180]
Yang, S.Y., Wang, M., Jiao, L.C.: A genetic algorithm based on quantum chromosome. In: Proc. ICSP, pp. 1622-1625 (2004a).
[181]
Yang, S.Y., Wang, M., Jiao, L.C.: A novel quantum evolutionary algorithm and its application. In: Proc CEC, pp. 820-826 (2004b).
[182]
Yao, X., Liu, Y., Lin, G.: Evolutionary programming made faster. IEEE Trans. Evol. Comput. 3 (2), 82-102 (1999).
[183]
You, X., Liu, Y., Shuai, D.: On parallel immune quantum evolutionary algorithm based on learning mechanism and its convergence. In: Lecture Notes in Computer Science, vol. 4221, pp. 903-912 (2006a).
[184]
You, X., Shuai, D., Liu, S.: Research and implementation of quantum evolution algorithm based on immune theory. In: Proc. WCICA, pp. 3410-3414 (2006b).
[185]
You, X., Sheng, L., Dianxun, S.: Studying the performance of quantum evolutionary algorithm based on immune theory. In: Lecture Notes in Computer Science, vol. 4490, pp. 1068-1075 (2007).
[186]
You, X.M., Liu, S., Shuai, D.X.: On improved parallel immune quantum evolutionary algorithm based on learning mechanism. In: Proc. ISDA, pp. 908-913 (2006c).
[187]
Yu, Y., Tian, Y.F., Yin, Z.F.: Hybrid quantum evolutionary algorithms based on particle swarm theory. In: Proc. IEA, pp. 309-315 (2006).
[188]
Zhang, G., Rong, H.: Parameter setting of quantum-inspired genetic algorithm based on real observation. In: Lecture Notes in Artificial Intelligence, vol. 4481, pp. 492-499 (2007a).
[189]
Zhang, G.X., Rong, H.N.: Improved quantum-inspired genetic algorithm based time-frequency analysis of radar emitter signals. In: Lecture Notes in Artificial Intelligence, vol. 4481, pp. 484-491 (2006).
[190]
Zhang, G.X., Rong, H.N.: Quantum-inspired genetic algorithm based time-frequency atom decomposition. In: Lecture Notes in Computer Science, vol. 4490, pp. 243-250 (2007b).
[191]
Zhang, G.X., Rong, H.N.: Real-observation quantum-inspired evolutionary algorithm for a class of numerical optimization problems. In: Lecture Notes in Computer Science, vol. 4490, pp. 989-996 (2007c).
[192]
Zhang, G.X., Jin, W.D., Hu, L.H.: A novel parallel quantum genetic algorithm. In: Proc. PDCAT, pp. 693- 697 (2003a).
[193]
Zhang, G.X., Jin, W.D., Hu, L.Z.: Quantum evolutionary algorithm for multi-objective optimization problems. In: Proc. ISIC, pp. 703-708 (2003b).
[194]
Zhang, G.X., Jin, W.D., Li, N.: An improved quantum genetic algorithm and its application. In: Lecture Notes in Artificial Intelligence, vol. 2639, pp. 449-452 (2003c).
[195]
Zhang, G.X., Hu, L.Z., Jin, W.D.: Quantum computing based machine learning method and its application in radar emitter signal recognition. In: Lecture Notes in Artificial Intelligence, vol. 3131, pp. 92-103 (2004a).
[196]
Zhang, G.X., Hu, L.Z., Jin, W.D.: Resemblance coefficient and a quantum genetic algorithm for feature selection. In: Lecture Notes in Artificial Intelligence, vol. 3245, pp. 155-168 (2004b).
[197]
Zhang, G.X., Li, N., Jin, W.D., Hu, L.Z.: Novel quantum genetic algorithm and its applications. Front. Electr. Electron. Eng. China 1 (1), 31-36 (2006).
[198]
Zhang, G.X., Gheorghe, M., Wu, C.Z.: A quantum-inspired evolutionary algorithm based on p systems for knapsack problem. Fund. Inf. 87 (1), 93-116 (2008).
[199]
Zhang, J.S., Xu, Z.B., Liang, Y.: The whole annealing genetic algorithms and their sufficient and necessary conditions of convergence. Sci. China Ser. E, Technol. Sci. 27 (2), 154-164 (1997).
[200]
Zhang, R., Gao, H.: Improved quantum evolutionary algorithm for combinatorial optimization problem. In: Proc. ICMLC, pp. 3501-3505 (2007a).
[201]
Zhang, R., Gao, H.: Real-coded quantum evolutionary algorithm for complex functions with high-dimension. In: Proc. ICMA, pp. 2974-2979 (2007b).
[202]
Zhao, S., Xu, G., Tao, T., Liang, L.: Real-coded chaotic quantum-inspired genetic algorithm for training of fuzzy neural networks. Comput. Math. Appl. 57 (11-12), 2009-2015 (2009).
[203]
Zhao, Z., Peng, X., Peng, Y., Yu, E.: An effective constraint handling method in quantum-inspired evolutionary algorithm for knapsack problems. WSEAS Trans. Comput. 5 (6), 1194-1199 (2006).
[204]
Zhou, S., Sun, Z.: A new approach belonging to EDAS: Quantum-inspired genetic algorithm with only one chromosome. In: Lecture Notes in Computer Science, vol. 3612, pp. 141-150 (2005).
[205]
Zhou, W., Zhou, C., Huang, Y., Wang, Y.: Analysis of gene expression data: Application of quantum-inspired evolutionary algorithm tominimum sum-of-squares clustering. In: Lecture Notes in Artificial Intelligence, vol. 3642, pp. 383-391 (2005).
[206]
Zhou, W.G., Zhou, C.G., Huang, Y.X., Wang, Y.: Analysis of gene expression data: application of quantum-inspired evolutionary algorithm to minimum sum-of-squares clustering. In: Proc. FSLCT, SPIE, vol. 6105, pp. 383-391 (2006a).
[207]
Zhou, W.G., Zhou, C.G., Liu, G.X., Lv, H.Y., Liang, Y.C.: An improved quantum-inspired evolutionary algorithm for clustering gene expression data. Comput. Methods, pp. 1351-1356 (2006b).
[208]
Zitzler, E., Laumanns, M.: Problems and test data for multi-objective optimizers. http://www.tik.ee.ethz.ch/zitzler/testdata.html (1999).
[209]
Zitzler, E., Laumanns, M., Thiele, L.: Spea2: Improving the performance of the strength Pareto evolutionary algorithm. Technical Report 103, Computer Engineering and Communication Networks lab (TIK), Swiss Federal Institute of Technology (ETH) (2001).

Cited By

View all
  • (2024)EQGSA-DPW: A Quantum-GSA Algorithm-Based Data Placement for Scientific Workflow in Cloud Computing EnvironmentJournal of Grid Computing10.1007/s10723-024-09771-522:3Online publication date: 18-Jun-2024
  • (2024)Quantum Optimized Cost Based Feature Selection and Credit Scoring for Mobile Micro-financingComputational Economics10.1007/s10614-023-10365-863:2(919-950)Online publication date: 1-Feb-2024
  • (2023)Quantum Entanglement inspired Differential Evolution algorithmProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596377(2203-2210)Online publication date: 15-Jul-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Heuristics
Journal of Heuristics  Volume 17, Issue 3
June 2011
148 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2011

Author Tags

  1. Evolutionary computation
  2. Optimization
  3. Quantum computing
  4. Quantum-inspired evolutionary algorithm

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)EQGSA-DPW: A Quantum-GSA Algorithm-Based Data Placement for Scientific Workflow in Cloud Computing EnvironmentJournal of Grid Computing10.1007/s10723-024-09771-522:3Online publication date: 18-Jun-2024
  • (2024)Quantum Optimized Cost Based Feature Selection and Credit Scoring for Mobile Micro-financingComputational Economics10.1007/s10614-023-10365-863:2(919-950)Online publication date: 1-Feb-2024
  • (2023)Quantum Entanglement inspired Differential Evolution algorithmProceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596377(2203-2210)Online publication date: 15-Jul-2023
  • (2023)iSOMA swarm intelligence algorithm in synthesis of quantum computing circuits▪Applied Soft Computing10.1016/j.asoc.2023.110350142:COnline publication date: 1-Jul-2023
  • (2023)Solving DC power flow problems using quantum and hybrid algorithmsApplied Soft Computing10.1016/j.asoc.2023.110147137:COnline publication date: 1-Apr-2023
  • (2023)A balanced-quantum inspired evolutionary algorithm for solving disassembly line balancing problemApplied Soft Computing10.1016/j.asoc.2022.109840132:COnline publication date: 1-Jan-2023
  • (2023)Revisiting of peer-to-peer traffic: taxonomy, applications, identification techniques, new trends and challengesKnowledge and Information Systems10.1007/s10115-023-01915-565:11(4479-4536)Online publication date: 1-Nov-2023
  • (2023)Hybrid quantum genetic algorithm with adaptive rotation angle for the 0-1 Knapsack problem in the IBM Qiskit simulatorSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-022-07460-727:18(13321-13346)Online publication date: 1-Sep-2023
  • (2022)Quantum Circuit Evolution on NISQ Devices2022 IEEE Congress on Evolutionary Computation (CEC)10.1109/CEC55065.2022.9870269(1-8)Online publication date: 18-Jul-2022
  • (2022)A distributed adaptive optimization spiking neural P system for approximately solving combinatorial optimization problemsInformation Sciences: an International Journal10.1016/j.ins.2022.03.007596:C(1-14)Online publication date: 1-Jun-2022
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media