[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Visualising the global structure of search landscapes: genetic improvement as a case study

Published: 01 September 2018 Publication History

Abstract

The search landscape is a common metaphor to describe the structure of computational search spaces. Different landscape metrics can be computed and used to predict search difficulty. Yet, the metaphor falls short in visualisation terms because it is hard to represent complex landscapes, both in terms of size and dimensionality. This paper combines local optima networks, as a compact representation of the global structure of a search space, and dimensionality reduction, using the t-distributed stochastic neighbour embedding algorithm, in order to both bring the metaphor to life and convey new insight into the search process. As a case study, two benchmark programs, under a genetic improvement bug-fixing scenario, are analysed and visualised using the proposed method. Local optima networks for both iterated local search and a hybrid genetic algorithm, across different neighbourhoods, are compared, highlighting the differences in how the landscape is explored.

References

[1]
R. Amar, J. Stasko, A knowledge task-based framework for design and evaluation of information visualizations, in IEEE Symposium on Information Visualization, pp. 143---150 (2004).
[2]
M. Bastian, S. Heymann, M. Jacomy, Gephi : an open source software for exploring and manipulating networks, in International AAAI Conference on Web and Social Media. Association for the Advancement of Artificial (2009). https://www.aaai.org/ocs/index.php/ICWSM/09/paper/view/154
[3]
G. Csardi, T. Nepusz, The igraph software package for complex network research. InterJ. Complex Syst. 1695 (2006). http://igraph.org
[4]
R.A. DeMillo, R.J. Lipton, F.G. Sayward, Hints on test data selection: help for the practicing programmer. Computer 11(4), 34---41 (1978).
[5]
H. Do, S. Elbaum, G. Rothermel, Supporting controlled experimentation with testing techniques: an infrastructure and its potential impact. Empir. Softw. Eng. 10(4), 405---435 (2005).
[6]
Q. Duan, C. Shao, X. Li, Y. Shi, Visualizing the search dynamics in a high-dimensional space for a particle swarm optimizer. In: Simulated Evolution and Learning, Lecture Notes in Computer Science, pp. 994---1002. Springer, Cham (2017).
[7]
R. Dybowski, T.D. Collins, P.R. Weller, Visualization of Binary String Convergence by Sammon Mapping (Loughborough University, Loughborough, 1996)
[8]
C. Flamm, I.L. Hofacker, P.F. Stadler, M.T. Wolfinger, Barrier trees of degenerate landscapes. Phys. Chem. 216, 155---173 (2002)
[9]
J. Hallam, A. Prugel-Bennett, Large barrier trees for studying search. IEEE Trans. Evolut. Comput. 9(4), 385---397 (2005)
[10]
E. Hart, P. Ross, GAVEL--a new tool for genetic algorithm visualization. IEEE Trans. Evolut. Comput. 5(4), 335---348 (2001).
[11]
D. Holten, J.J. Van Wijk, Force-directed edge bundling for graph visualization. Comput. Graph. Forum 28(3), 983---990 (2009).
[12]
D.A. Keim, F. Mansmann, J. Schneidewind, H. Ziegler, Challenges in visual data analysis, in Tenth International Conference on Information Visualisation (IV'06), pp. 9---16 (2006).
[13]
Y.H. Kim, B.R. Moon, New usage of Sammon's mapping for genetic visualization, in Genetic and Evolutionary Computation--GECCO 2003, Lecture Notes in Computer Science, pp. 1136---1147. Springer, Berlin, Heidelberg (2003).
[14]
S.G. Kobourov, Force-directed drawing algorithms, in Handbook of Graph Drawing and Visualization, 1st edn., ed. by R. Tamassia (CRC Press, Boca Raton, 2013), pp. 349---381
[15]
O. Kramer, D. Luckehe, Visualization of evolutionary runs with isometric mapping, in 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 1359---1363 (2015).
[16]
W.B. Langdon, M. Harman, Y. Jia, Efficient multi-objective higher order mutation testing with genetic programming. J. Syst. Softw. 83(12), 2416---2430 (2010).
[17]
W.B. Langdon, G. Ochoa, Genetic improvement: a key challenge for evolutionary computation, in 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 3068---3075 (2016).
[18]
W.B. Langdon, J. Petke, Software is not fragile, in First Complex Systems Digital Campus World E-Conference 2015, pp. 203---211. Springer, Cham (2017).
[19]
W.B. Langdon, N. Veerapen, G. Ochoa, Visualising the search landscape of the triangle program, in Genetic Programming, vol. 10196, Lecture Notes in Computer Science, ed. by J. McDermott, M. Castelli, L. Sekanina, E. Haasdijk, P. Garcia-Sànchez (Springer, Cham, 2017), pp. 96---113.
[20]
J.A. Lee, M. Verleysen, Nonlinear Dimensionality Reduction, 1st edn. (Springer, Berlin, 2007)
[21]
E. Lutton, J. Foucquier, N. Perrot, J. Louchet, J.D. Fekete, Visual Analysis of Population Scatterplots, in Artificial Evolution, no. 7401 in Lecture Notes in Computer Science, ed. by J.K. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2011), pp. 61---72
[22]
K.M. Malan, A.P. Engelbrecht, A survey of techniques for characterising fitness landscapes and some possible ways forward. Inf. Sci. 241, 148---163 (2013)
[23]
S. Martin, W.M. Brown, B.N. Wylie, Dr.L: Distributed Recursive (Graph) Layout. Tech. Rep. dRl; 002182MLTPL00, Sandia National Laboratories (2007). https://www.osti.gov/scitech/biblio/1231060
[24]
M.E.J. Newman, R. Engelhardt, Effect of neutral selection on the evolution of molecular species. Proc. R. Soc. Lond. B 265, 1333---1338 (1998)
[25]
G. Ochoa, M. Tomassini, S. Vérel, C. Darabos, A study of NK landscapes' basins and local optima networks, in Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, GECCO '08, pp. 555---562. ACM, New York, NY, USA (2008).
[26]
G. Ochoa, N. Veerapen, Mapping the global structure of TSP fitness landscapes. J. Heuristics 24(3), 265---294 (2018).
[27]
G. Ochoa, N. Veerapen, F. Daolio, M. Tomassini, Understanding phase transitions with local optima networks: number partitioning as a case study, in Evolutionary Computation in Combinatorial Optimization, vol. 10197, Lecture Notes in Computer Science, ed. by B. Hu, M. López-Ibáñez (Springer, Cham, 2017), pp. 233---248.
[28]
G. Ochoa, N. Veerapen, D. Whitley, E.K. Burke, The multi-funnel structure of TSP fitness landscapes: a visual exploration, in Artificial Evolution, vol. 9554, Lecture Notes in Computer Science, ed. by S. Bonnevay, P. Legrand, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2015), pp. 1---13.
[29]
J. Petke, S.O. Haraldsson, M. Harman, W.B. Langdon, D.R. White, J.R. Woodward, Genetic improvement of software: a comprehensive survey. IEEE Trans. Evolut. Comput. 22(3), 415---432 (2018).
[30]
E. Schulte, Z.P. Fry, E. Fast, W. Weimer, S. Forrest, Software mutational robustness. Genet. Program. Evolvable Mach. 15(3), 281---312 (2014).
[31]
P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498---2504 (2003).
[32]
P.F. Stadler, Appl. Math. Comput. 117, 187---207 (2002)
[33]
S.L. Thomson, F. Daolio, G. Ochoa, Comparing communities of optima with funnels in combinatorial fitness landscapes, in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO '17, pp. 377---384. ACM, New York, NY, USA (2017).
[34]
R.H. Untch, A.J. Offutt, M.J. Harrold, Mutation analysis using mutant schemata, in Proceedings of the 1993 ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA '93, pp. 139---148. ACM, New York, NY, USA (1993).
[35]
L. Van Der Maaten, Accelerating t-SNE using tree-based algorithms. J. Mach. Learn. Res. 15(1), 3221---3245 (2014)
[36]
L. Van Der Maaten, G. Hinton, Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579---2605 (2008)
[37]
L. Van Der Maaten, E. Postma, J. Van den Herik, Dimensionality reduction: a comparative review. Technical Report 2009-005, Tilburg University, Tilburg, The Netherlands (2009)
[38]
N. Veerapen, F. Daolio, G. Ochoa, Modelling genetic improvement landscapes with local optima networks, in Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO '17, pp. 1543---1548. ACM, New York, NY, USA (2017).
[39]
N. Veerapen, G. Ochoa, R. Tinós, D. Whitley, Tunnelling crossover networks for the asymmetric TSP, in Parallel Problem Solving from Nature--PPSN XIV, vol. 9921, Lecture Notes in Computer Science, ed. by J. Handl, E. Hart, P.R. Lewis, M. López-Ibáñez, G. Ochoa, B. Paechter (Springer, Berlin, 2016), pp. 994---1003.
[40]
S. Verel, F. Daolio, G. Ochoa, M. Tomassini, Local optima networks with escape edges, in Artificial Evolution, EA 2011, vol. 7401, Lecture Notes in Computer Science, ed. by J.K. Hao, P. Legrand, P. Collet, N. Monmarché, E. Lutton, M. Schoenauer (Springer, Berlin, 2012), pp. 49---60.
[41]
S. Vérel, G. Ochoa, M. Tomassini, Local optima networks of NK landscapes with neutrality. IEEE Trans. Evolut. Comput. 15(6), 783---797 (2011).
[42]
S. Volke, D. Zeckzer, M. Middendorf, G. Scheuermann, Visualizing topological properties of the search landscape of combinatorial optimization problems. In: Topological Methods in Data Analysis and Visualization IV, Mathematics and Visualization, pp. 69---85. Springer, Cham (2015).
[43]
S. Volke, D. Zeckzer, G. Scheuermann, M. Middendorf, A Visual method for analysis and comparison of search landscapes, in Proceedings of the 2015 Annual Conference on Genetic and Evolutionary Computation, GECCO '15, pp. 497---504. ACM, New York, NY, USA (2015).
[44]
D.J. Wales, Ma. Miller, Walsh T.R, Archetypal energy landscapes. Nature 394(August), 758---760 (1998)
[45]
W. Weimer, S. Forrest, Automatic program repair with evolutionary computation. Commun. ACM 53, 109---116 (2010)
[46]
X. Yao, M. Harman, Y. Jia, A study of equivalent and stubborn mutation operators using human analysis of equivalence, in Proceedings of the 36th International Conference on Software Engineering, ICSE 2014, pp. 919---930. ACM, New York, NY, USA (2014).

Cited By

View all
  • (2025)Deep imperative mutations have less impactAutomated Software Engineering10.1007/s10515-024-00475-432:1Online publication date: 1-Jun-2025
  • (2024)Approximating Pareto Local Optimal Solution NetworksProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3653999(603-611)Online publication date: 14-Jul-2024
  • (2023)Exploring structural similarity in fitness landscapes via graph data miningProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/621(5595-5603)Online publication date: 19-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Genetic Programming and Evolvable Machines
Genetic Programming and Evolvable Machines  Volume 19, Issue 3
September 2018
155 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 September 2018

Author Tags

  1. Fitness landscape
  2. Genetic improvement
  3. Local optima network
  4. Visualisation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Deep imperative mutations have less impactAutomated Software Engineering10.1007/s10515-024-00475-432:1Online publication date: 1-Jun-2025
  • (2024)Approximating Pareto Local Optimal Solution NetworksProceedings of the Genetic and Evolutionary Computation Conference10.1145/3638529.3653999(603-611)Online publication date: 14-Jul-2024
  • (2023)Exploring structural similarity in fitness landscapes via graph data miningProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/621(5595-5603)Online publication date: 19-Aug-2023
  • (2023)Extrema Graphs: Fitness Landscape Analysis to the Extreme!Proceedings of the Companion Conference on Genetic and Evolutionary Computation10.1145/3583133.3596343(2081-2089)Online publication date: 15-Jul-2023
  • (2022)Deep Genetic Programming Trees Are RobustACM Transactions on Evolutionary Learning and Optimization10.1145/35397382:2(1-34)Online publication date: 16-Aug-2022
  • (2022)Digging into Semantics: Where Do Search-Based Software Repair Methods Search?Parallel Problem Solving from Nature – PPSN XVII10.1007/978-3-031-14721-0_1(3-18)Online publication date: 10-Sep-2022
  • (2021)Investigating the landscape of a hybrid local search approach for a timetabling problemProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3449726.3463175(1665-1673)Online publication date: 7-Jul-2021
  • (2021)Dissipative polynomialsProceedings of the Genetic and Evolutionary Computation Conference Companion10.1145/3449726.3463147(1683-1691)Online publication date: 7-Jul-2021
  • (2021)Towards exploratory landscape analysis for large-scale optimizationProceedings of the Genetic and Evolutionary Computation Conference10.1145/3449639.3459300(546-555)Online publication date: 26-Jun-2021
  • (2020)Evolving search trajectoriesProceedings of the 2020 Genetic and Evolutionary Computation Conference Companion10.1145/3377929.3390025(101-102)Online publication date: 8-Jul-2020
  • Show More Cited By

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media