[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Systematizing core properties of pairing-based attribute-based encryption to uncover remaining challenges in enforcing access control in practice

Published: 06 September 2022 Publication History

Abstract

Attribute-based encryption (ABE) cryptographically implements fine-grained access control on data. As such, data can be stored by an entity that is not necessarily trusted to enforce access control, or an entity that is not even trusted to have access to the plaintext data at all. Instead, access control can be externally enforced by a trusted entity. Additionally, some multi-authority variants of ABE—which do not have a central authority—can effectively and securely implement access control in multiple-domain settings. Furthermore, ABE is the only cryptographic approach to fine-grained access control that does not require an online trusted third party during access requests, and thus provides better availability properties. The actual realization of these theoretical advantages in practice depends on whether current state-of-the-art ABE schemes support the necessary core properties. Much progress has been made in the last two decades in pairing-based ABE schemes, owing to their versatility and efficiency. In fact, it is possible to support most core properties under strong security guarantees, while incurring acceptable storage and computational costs. It is therefore a good time to ask ourselves whether pairing-based ABE has reached its full practical potential. To answer this question, we provide a comprehensive systematized overview of various existing pairing-based ABE schemes and their core properties. We also investigate the relationship between these core properties and real-world access control requirements. We show that a few challenges remain, that must be overcome for ABE to reach its full potential as a mechanism to implement efficient and secure access control in practice.

References

[1]
Abe M., Groth J., Ohkubo M., Tango T.: Converting cryptographic schemes from symmetric to asymmetric bilinear groups. In: CRYPTO, pp. 241–260. Springer (2014).
[2]
Abe M., Hoshino F., Ohkubo M.: Design in type-i, run in type-iii: Fast and scalable bilinear-type conversion using integer programming. In: CRYPTO, pp. 387–415. Springer (2016).
[3]
Agrawal S., Chase M.: A study of pair encodings: Predicate encryption in prime order groups. In: TCC, pp. 259–288. Springer (2016).
[4]
Agrawal S., Chase M.: FAME: fast attribute-based message encryption. In: CCS, pp. 665–682. ACM (2017).
[5]
Agrawal S., Chase M.: Simplifying design and analysis of complex predicate encryption schemes. In: EUROCRYPT, pp. 627–656. Springer (2017).
[6]
Akinyele J.A., Garman C., Hohenberger S.: Automating fast and secure translations from type-i to type-iii pairing schemes. In: CCS, pp. 1370–1381. ACM (2015).
[7]
Akinyele J.A., Pagano M.W., Green M.D., Lehmann C.U., Peterson Z.N.J., Rubin A.D.: Securing electronic medical records using attribute-based encryption on mobile devices. In: SPSM, pp. 75–86. ACM (2011).
[8]
Alemán JLF, Señor IC, Lozoya PÁO, and Toval A Security and privacy in electronic health records: A systematic literature review J. Biomed. Informatics 2013 46 3 541-562
[9]
Ambrona M.: Generic negation of pair encodings. In: Garay J.A. (ed.) PKC, Lecture Notes in Computer Science, vol. 12711, pp. 120–146. Springer (2021).
[10]
Ambrona M., Barthe G., Gay R., Wee H.: Attribute-based encryption in the generic group model: Automated proofs and new constructions. In: CCS, pp. 647–664. ACM (2017).
[11]
Aranha D.: Pairings are not dead, just resting (2017). https://ecc2017.cs.ru.nl/slides/ecc2017-aranha.pdf
[12]
Aranha D.F., Gouvêa C.P.L., Markmann T., Wahby R.S., Liao K.: RELIC is an Efficient LIbrary for Cryptography. https://github.com/relic-toolkit/relic
[13]
Attrapadung N.: Dual system encryption via doubly selective security: Framework, fully secure functional encryption for regular languages, and more. In: EUROCRYPT, pp. 557–577. Springer (2014).
[14]
Attrapadung N.: Dual system encryption framework in prime-order groups via computational pair encodings. In: ASIACRYPT, pp. 591–623. Springer (2016).
[15]
Attrapadung N.: Unbounded dynamic predicate compositions in attribute-based encryption. In: EUROCRYPT, pp. 34–67. Springer (2019).
[16]
Attrapadung N., Hanaoka G., Matsumoto T., Teruya T., Yamada S.: Attribute based encryption with direct efficiency tradeoff. In: ACNS, pp. 249–266. Springer (2016).
[17]
Attrapadung N., Hanaoka G., Yamada S.: Conversions among several classes of predicate encryption and applications to ABE with various compactness tradeoffs. In: ASIACRYPT, pp. 575–601. Springer (2015).
[18]
Attrapadung N., Imai H.: Attribute-based encryption supporting direct/indirect revocation modes. In: Parker M.G. (ed.) IMACC, LNCS, vol. 5921, pp. 278–300. Springer (2009).
[19]
Attrapadung N., Imai H.: Conjunctive broadcast and attribute-based encryption. In: Pairing, LNCS, vol. 5671, pp. 248–265. Springer (2009).
[20]
Attrapadung N., Libert B.: Functional encryption for inner product: Achieving constant-size ciphertexts with adaptive security or support for negation. In: PKC, pp. 384–402. Springer (2010).
[21]
Attrapadung N., Libert B., de Panafieu E.: Expressive key-policy attribute-based encryption with constant-size ciphertexts. In: PKC, pp. 90–108. Springer (2011).
[22]
Attrapadung N., Tomida J.: Unbounded dynamic predicate compositions in ABE from standard assumptions. In: ASIACRYPT, pp. 405–436. Springer (2020).
[23]
Attrapadung N., Yamada S.: Duality in ABE: converting attribute based encryption for dual predicate and dual policy via computational encodings. In: CT-RSA, pp. 87–105. Springer (2015).
[24]
Barbulescu R and Duquesne S Updating key size estimations for pairings J. Cryptol. 2019 32 4 1298-1336
[25]
Barreto P.S.L.M., Lynn B., Scott M.: Constructing elliptic curves with prescribed embedding degrees. In: SCN, pp. 257–267. Springer (2002).
[26]
Barreto P.S.L.M., Naehrig M.: Pairing-friendly elliptic curves of prime order. In: SAC, pp. 319–331. Springer (2005).
[27]
Beimel A.: Secure schemes for secret sharing and key distribution (1996).
[28]
Bellare M., Rogaway P.: Random oracles are practical: A paradigm for designing efficient protocols. In: CCS, pp. 62–73. ACM (1993).
[29]
Bethencourt J., Sahai A., Waters B.: Ciphertext-policy attribute-based encryption. In: S &P, pp. 321–334. IEEE (2007).
[30]
Blaze M., Bleumer G., Strauss M.: Divertible protocols and atomic proxy cryptography. In: Nyberg K. (ed.) EUROCRYPT, LNCS, vol. 1403, pp. 127–144. Springer (1998).
[31]
Boneh D.: The decision diffie-hellman problem. In: Buhler J. (ed.) ANTS-III, LNCS, vol. 1423, pp. 48–63. Springer (1998).
[32]
Boneh D., Boyen X.: Efficient selective-id secure identity-based encryption without random oracles. In: EUROCRYPT, pp. 223–238. Springer (2004).
[33]
Boneh D., Boyen X., Goh E.J.: Hierarchical identity based encryption with constant size ciphertext. In: EUROCRYPT, pp. 440–456. Springer (2005).
[34]
Boneh D., Waters B.: Conjunctive, subset, and range queries on encrypted data. In: Vadhan S.P. (ed.) TCC, LNCS, vol. 4392, pp. 535–554. Springer (2007).
[35]
Boyen X.: The uber-assumption family – a unified complexity framework for bilinear groups. In: Pairing, pp. 39–56. Springer (2008).
[36]
Boyen X.: Attribute-based functional encryption on lattices. In: Sahai A. (ed.) TCC, LNCS, vol. 7785, pp. 122–142. Springer (2013).
[37]
Brickell E.F., Gordon D.M., McCurley K.S., Wilson D.B.: Fast exponentiation with precomputation (extended abstract). In: EUROCRYPT, pp. 200–207. Springer (1992).
[38]
Canetti R, Goldreich O, and Halevi S The random oracle methodology, revisited J. ACM 2004 51 4 557-594
[39]
Canetti R., Halevi S., Katz J.: Chosen-ciphertext security from identity-based encryption. In: Cachin C., Camenisch J. (eds.) EUROCRYPT, LNCS, vol. 3027, pp. 207–222. Springer (2004).
[40]
Chase M.: Multi-authority attribute-based encryption. In: TCC, pp. 515–534. Springer (2007).
[41]
Chase M., Chow S.S.M.: Improving privacy and security in multi-authority attribute-based encryption. In: Al-Shaer E., Jha S., Keromytis A.D. (eds.) CCS, pp. 121–130. ACM (2009).
[42]
Chatterjee S., Koblitz N., Menezes A., Sarkar P.: Another look at tightness II: practical issues in cryptography. In: Phan R.C., Yung M. (eds.) Mycrypt, LNCS, vol. 10311, pp. 21–55. Springer (2016).
[43]
Chen C., Chen J., Lim H.W., Zhang Z., Feng D., Ling S., Wang H.: Fully secure attribute-based systems with short ciphertexts/signatures and threshold access structures. In: CT-RSA, pp. 50–67. Springer (2013).
[44]
Chen C., Zhang Z., Feng D.: Efficient ciphertext policy attribute-based encryption with constant-size ciphertext and constant computation-cost. In: Boyen X., Chen X. (eds.) ProvSec, LNCS, vol. 6980, pp. 84–101. Springer (2011).
[45]
Chen J., Gay R., Wee H.: Improved dual system ABE in prime-order groups via predicate encodings. In: EUROCRYPT, pp. 595–624. Springer (2015).
[46]
Chen J., Gong J.: ABE with tag made easy - concise framework and new instantiations in prime-order groups. In: Takagi T., Peyrin T. (eds.) ASIACRYPT, LNCS, vol. 10625, pp. 35–65. Springer (2017).
[47]
Chen J., Gong J., Kowalczyk L., Wee H.: Unbounded ABE via bilinear entropy expansion, revisited. In: EUROCRYPT, pp. 503–534. Springer (2018).
[48]
Chen J., Wee H.: Fully, (almost) tightly secure IBE and dual system groups. In: Canetti R., Garay J.A. (eds.) CRYPTO, LNCS, vol. 8043, pp. 435–460. Springer (2013).
[49]
Chen J., Wee H.: Dual system groups and its applications — compact hibe and more. Cryptology ePrint Archive, Report 2014/265 (2014).
[50]
Chen J., Wee H.: Semi-adaptive attribute-based encryption and improved delegation for boolean formula. In: Abdalla M., Prisco R.D. (eds.) SCN, LNCS, vol. 8642, pp. 277–297. Springer (2014).
[51]
Cheon J.H.: Security analysis of the strong diffie-hellman problem. In: Vaudenay S. (ed.) EUROCRYPT, LNCS, vol. 4004, pp. 1–11. Springer (2006).
[52]
Cheung L., Newport C.C.: Provably secure ciphertext policy ABE. In: Ning P., di Vimercati S.D.C., Syverson P.F. (eds.) CCS, pp. 456–465. ACM (2007).
[53]
Chow S.S.M.: Removing escrow from identity-based encryption. In: Jarecki S., Tsudik G. (eds.) PKC, Lecture Notes in Computer Science, vol. 5443, pp. 256–276. Springer (2009).
[54]
Chow S.S.M.: A framework of multi-authority attribute-based encryption with outsourcing and revocation. In: Wang X.S., Bauer L., Kerschbaum F. (eds.) SACMAT, pp. 215–226. ACM (2016).
[55]
Cui H., Deng R.H., Li Y., Qin B.: Server-aided revocable attribute-based encryption. In: Askoxylakis I.G., Ioannidis S., Katsikas S.K., Meadows C.A. (eds.) ESORICS, LNCS, vol. 9879, pp. 570–587. Springer (2016).
[56]
de la Piedra A, Venema M, and Alpár G ABE squared: Accurately benchmarking efficiency of attribute-based encryption IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022 2022 2 192-239
[57]
de Lemos R., Giese H., Müller H.A., Shaw M., Andersson J., Litoiu M., Schmerl B.R., Tamura G., Villegas N.M., Vogel T., Weyns D., Baresi L., Becker B., Bencomo N., Brun Y., Cukic B., Desmarais R.J., Dustdar S., Engels G., Geihs K., Göschka K.M., Gorla A., Grassi V., Inverardi P., Karsai G., Kramer J., Lopes A., Magee J., Malek S., Mankovski S., Mirandola R., Mylopoulos J., Nierstrasz O., Pezzè M., Prehofer C., Schäfer W., Schlichting R.D., Smith D.B., Sousa J.P., Tahvildari L., Wong K., Wuttke J.: Software engineering for self-adaptive systems: A second research roadmap. In: de Lemos R., Giese H., Müller H.A., Shaw M. (eds.) Software Engineering for Self-Adaptive Systems II - International Seminar, Dagstuhl Castle, Germany, October 24-29, 2010 Revised Selected and Invited Papers, Lecture Notes in Computer Science, vol. 7475, pp. 1–32. Springer (2010).
[58]
Deng M, Wuyts K, Scandariato R, Preneel B, and Joosen W A privacy threat analysis framework: supporting the elicitation and fulfillment of privacy requirements Requir. Eng. 2011 16 1 3-32
[59]
Dent A.W.: Adapting the weaknesses of the random oracle model to the generic group model. In: Zheng Y. (ed.) ASIACRYPT, LNCS, vol. 2501, pp. 100–109. Springer (2002).
[60]
Diffie W and Hellman ME New directions in cryptography IEEE Trans. Inf. Theory 1976 22 6 644-654
[61]
ETSI: ETSI TS 103 458 (V1.1.1) (2018).
[62]
ETSI: ETSI TS 103 532 (V1.1.1) (2018).
[63]
Freeman D.M.: Converting pairing-based cryptosystems from composite-order groups to prime-order groups. In: Gilbert H. (ed.) EUROCRYPT, LNCS, vol. 6110, pp. 44–61. Springer (2010).
[64]
Fujisaki E., Okamoto T.: Secure integration of asymmetric and symmetric encryption schemes. In: Wiener M.J. (ed.) CRYPTO, LNCS, vol. 1666, pp. 537–554. Springer (1999).
[65]
Galbraith S.D.: New discrete logarithm records, and the death of type 1 pairings. https://ellipticnews.wordpress.com/2014/02/01/new-discrete-logarithm-records-and-the-death-of-type-1-pairings/ (2014).
[66]
Galbraith SD, Paterson KG, and Smart NP Pairings for cryptographers Discret. Appl. Math. 2008 156 16 3113-3121
[67]
Gamal T.E.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley G.R., Chaum D. (eds.) CRYPTO, LNCS, vol. 196, pp. 10–18. Springer (1984).
[68]
Garg S., Gentry C., Halevi S., Sahai A., Waters B.: Attribute-based encryption for circuits from multilinear maps. In: Canetti R., Garay J.A. (eds.) CRYPTO, LNCS, vol. 8043, pp. 479–499. Springer (2013).
[69]
Garg S., Kumarasubramanian A., Sahai A., Waters B.: Building efficient fully collusion-resilient traitor tracing and revocation schemes. In: Al-Shaer E., Keromytis A.D., Shmatikov V. (eds.) CCS, pp. 121–130. ACM (2010).
[70]
Ge A., Zhang R., Chen C., Ma C., Zhang Z.: Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. In: Susilo W., Mu Y., Seberry J. (eds.) ACISP, LNCS, vol. 7372, pp. 336–349. Springer (2012).
[71]
Gorbunov S., Vaikuntanathan V., Wee H.: Attribute-based encryption for circuits. J. ACM 62(6), 45:1–45:33 (2015).
[72]
Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-grained access control of encrypted data. In: CCS. ACM (2006).
[73]
Goyal V., Pandey O., Sahai A., Waters B.: Attribute-based encryption for fine-grained access control of encrypted data. Cryptology ePrint Archive, Report 2006/309 (2006).
[74]
Green M., Ateniese G.: Identity-based proxy re-encryption. In: Katz J., Yung M. (eds.) ACNS, LNCS, vol. 4521, pp. 288–306. Springer (2007).
[75]
Green M., Hohenberger S., Waters B.: Outsourcing the decryption of ABE ciphertexts. In: USENIX Security Symposium. USENIX Association (2011).
[76]
Guillevic A.: Comparing the pairing efficiency over composite-order and prime-order elliptic curves. In: Jacobson Jr. M.J., Locasto M.E., Mohassel P., Safavi-Naini R. (eds.) ACNS, LNCS, vol. 7954, pp. 357–372. Springer (2013).
[77]
[78]
Guillevic A.: A short-list of pairing-friendly curves resistant to special TNFS at the 128-bit security level. In: PKC, pp. 535–564. Springer (2020).
[79]
Guillevic A., Singh S.: On the alpha value of polynomials in the tower number field sieve algorithm. Cryptology ePrint Archive, Report 2019/885 (2019).
[80]
Häyrinen K, Saranto K, and Nykänen P Definition, structure, content, use and impacts of electronic health records: A review of the research literature Int. J. Medical Informatics 2008 77 5 291-304
[81]
Herranz J., Laguillaumie F., Ràfols C.: Constant size ciphertexts in threshold attribute-based encryption. In: Nguyen P.Q., Pointcheval D. (eds.) PKC, LNCS, vol. 6056, pp. 19–34. Springer (2010).
[82]
Hiller J., McMullen M.S., Chumney W.M., Baumer D.L.: Privacy and security in the implementation of health information technology (electronic health records): U.s. and eu compared. Boston University Journal of Science & Technology Law 17(1), 1–39 (2011).
[83]
Hohenberger S., Waters B.: Attribute-based encryption with fast decryption. In: Kurosawa K., Hanaoka G. (eds.) PKC, LNCS, vol. 7778, pp. 162–179. Springer (2013).
[84]
Hohenberger S., Waters B.: Online/offline attribute-based encryption. In: PKC, pp. 293–310. Springer (2014).
[85]
Hu C.T., Ferraiolo D.F., Kuhn D.R., Schnitzer A., Sandlin K., Miller R., Scarfone K.: Guide to attribute based access control (ABAC) definition and considerations (2019). https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=927500
[86]
Ibraimi L., Petkovic M., Nikova S., Hartel P.H., Jonker W.: Mediated ciphertext-policy attribute-based encryption and its application. In: Youm H.Y., Yung M. (eds.) WISA, LNCS, vol. 5932, pp. 309–323. Springer (2009).
[87]
Kamara S., Lauter K.E.: Cryptographic cloud storage. In: FC, pp. 136–149. Springer (2010).
[88]
Katz J., Sahai A., Waters B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart N.P. (ed.) EUROCRYPT, LNCS, vol. 4965, pp. 146–162. Springer (2008).
[89]
Koblitz N and Menezes AJ The random oracle model: a twenty-year retrospective Des. Codes Cryptogr. 2015 77 2–3 587-610
[90]
Koppula V., Waters B.: Realizing chosen ciphertext security generically in attribute-based encryption and predicate encryption. In: Boldyreva A., Micciancio D. (eds.) CRYPTO, LNCS, vol. 11693, pp. 671–700. Springer (2019)
[91]
Kowalczyk L., Lewko A.B.: Bilinear entropy expansion from the decisional linear assumption. In: Gennaro R., Robshaw M. (eds.) CRYPTO, LNCS, vol. 9216, pp. 524–541. Springer (2015).
[92]
Kowalczyk L., Wee H.: Compact adaptively secure ABE for nc1 from k-lin. In: EUROCRYPT, pp. 3–33. Springer (2019).
[93]
Lai J., Tang Q.: Making any attribute-based encryption accountable, efficiently. In: López J., Zhou J., Soriano M. (eds.) ESORICS, LNCS, vol. 11099, pp. 527–547. Springer (2018).
[94]
Leurent G., Nguyen P.Q.: How risky is the random-oracle model? In: Halevi S. (ed.) CRYPTO, Lecture Notes in Computer Science, vol. 5677, pp. 445–464. Springer (2009).
[95]
Lewko A., Sahai A., Waters B.: Revocation systems with very small private keys. In: IEEE S & P, pp. 273–285 (2010).
[96]
Lewko A., Waters B.: Decentralizing attribute-based encryption. Cryptology ePrint Archive, Report 2010/351 (2010).
[97]
Lewko A., Waters B.: Decentralizing attribute-based encryption. In: EUROCRYPT, pp. 568–588. Springer (2011).
[98]
Lewko A.B.: Tools for simulating features of composite order bilinear groups in the prime order setting. In: Pointcheval D., Johansson T. (eds.) EUROCRYPT, LNCS, vol. 7237, pp. 318–335. Springer (2012).
[99]
Lewko A.B., Okamoto T., Sahai A., Takashima K., Waters B.: Fully secure functional encryption: Attribute-based encryption and (hierarchical) inner product encryption. In: EUROCRYPT, pp. 62–91. Springer (2010).
[100]
Lewko A.B., Waters B.: New techniques for dual system encryption and fully secure HIBE with short ciphertexts. In: Micciancio D. (ed.) TCC, LNCS, vol. 5978, pp. 455–479. Springer (2010).
[101]
Lewko A.B., Waters B.: Unbounded HIBE and attribute-based encryption. In: EUROCRYPT, pp. 547–567. Springer (2011).
[102]
Lewko A.B., Waters B.: New proof methods for attribute-based encryption: Achieving full security through selective techniques. In: CRYPTO, pp. 180–198. Springer (2012).
[103]
Lewko A.B., Waters B.: Why proving HIBE systems secure is difficult. In: Nguyen P.Q., Oswald E. (eds.) EUROCRYPT, LNCS, vol. 8441, pp. 58–76. Springer (2014).
[104]
Li J., Chen X., Li J., Jia C., Ma J., Lou W.: Fine-grained access control system based on outsourced attribute-based encryption. In: Crampton J., Jajodia S., Mayes K. (eds.) ESORICS, LNCS, vol. 8134, pp. 592–609. Springer (2013).
[105]
Li J., Huang Q., Chen X., Chow S.S.M., Wong D.S., Xie D.: Multi-authority ciphertext-policy attribute-based encryption with accountability. In: Cheung B.S.N., Hui L.C.K., Sandhu R.S., Wong D.S. (eds.) ASIACCS, pp. 386–390. ACM (2011).
[106]
Lin H., Cao Z., Liang X., Shao J.: Secure threshold multi authority attribute based encryption without a central authority. In: Chowdhury D.R., Rijmen V., Das A. (eds.) INDOCRYPT, LNCS, vol. 5365, pp. 426–436. Springer (2008).
[107]
Lin H., Luo J.: Compact adaptively secure ABE from k-lin: Beyond nc1 and towards NL. In: EUROCRYPT, pp. 247–277. Springer (2020).
[108]
Lin H., Luo J.: Succinct and adaptively secure ABE for ABP from k-lin. In: Moriai S., Wang H. (eds.) ASIACRYPT, LNCS, vol. 12493, pp. 437–466. Springer (2020).
[109]
Liu J.K., Yuen T.H., Zhang P., Liang K.: Time-based direct revocable ciphertext-policy attribute-based encryption with short revocation list. In: Preneel B., Vercauteren F. (eds.) ACNS, LNCS, vol. 10892, pp. 516–534. Springer (2018).
[110]
Liu Z., Cao Z., Huang Q., Wong D.S., Yuen T.H.: Fully secure multi-authority ciphertext-policy attribute-based encryption without random oracles. In: Atluri V., Díaz C. (eds.) ESORICS, LNCS, vol. 6879, pp. 278–297. Springer (2011).
[111]
Liu Z., Cao Z., Wong D.S.: Blackbox traceable CP-ABE: how to catch people leaking their keys by selling decryption devices on ebay. In: Sadeghi A., Gligor V.D., Yung M. (eds.) CCS, pp. 475–486. ACM (2013).
[112]
Liu Z., Wong D.S.: Practical ciphertext-policy attribute-based encryption: Traitor tracing, revocation, and large universe. In: Malkin T., Kolesnikov V., Lewko A.B., Polychronakis M. (eds.) ACNS, LNCS, vol. 9092, pp. 127–146. Springer (2015).
[113]
Lynn B.: The stanford pairing based crypto library. http://crypto.stanford.edu/pbc
[114]
Malek S., Mikic-Rakic M., Medvidovic N.: A decentralized redeployment algorithm for improving the availability of distributed systems. In: Dearle A., Eisenbach S. (eds.) Component Deployment, Lecture Notes in Computer Science, vol. 3798, pp. 99–114. Springer (2005).
[115]
Michalevsky Y., Joye M.: Decentralized policy-hiding ABE with receiver privacy. In: López J., Zhou J., Soriano M. (eds.) ESORICS, LNCS, vol. 11099, pp. 548–567. Springer (2018).
[116]
Möller B.: Algorithms for multi-exponentiation. In: SAC, pp. 165–180. Springer (2001).
[117]
Müller S., Katzenbeisser S., Eckert C.: Distributed attribute-based encryption. In: Lee P.J., Cheon J.H. (eds.) ICISC, LNCS, vol. 5461, pp. 20–36. Springer (2008).
[118]
Narayanan A., Shmatikov V.: Robust de-anonymization of large sparse datasets. In: S & P, pp. 111–125. IEEE Computer Society (2008).
[119]
Nishide T., Yoneyama K., Ohta K.: Attribute-based encryption with partially hidden encryptor-specified access structures. In: Bellovin S.M., Gennaro R., Keromytis A.D., Yung M. (eds.) ACNS, LNCS, vol. 5037, pp. 111–129 (2008).
[120]
of European Union C.: Regulation (eu) 2016/679 of the european parliament and of the council. https://eur-lex.europa.eu/eli/reg/2016/679/oj (2016).
[121]
Okamoto T., Takashima K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin T. (ed.) CRYPTO, LNCS, vol. 6223, pp. 191–208. Springer (2010).
[122]
Okamoto T., Takashima K.: Fully secure unbounded inner-product and attribute-based encryption. In: ASIACRYPT, pp. 349–366. Springer (2012).
[123]
Okamoto T., Takashima K.: Decentralized attribute-based signatures. In: Kurosawa K., Hanaoka G. (eds.) PKC, LNCS, vol. 7778, pp. 125–142. Springer (2013).
[124]
Ostrovsky R., Sahai A., Waters B.: Attribute-based encryption with non-monotonic access structures. In: CCS, pp. 195–203. ACM (2007).
[125]
Paterson KG and Price G A comparison between traditional public key infrastructures and identity-based cryptography Inf. Secur. Tech. Rep. 2003 8 3 57-72
[126]
Pirretti M, Traynor P, McDaniel PD, and Waters B Secure attribute-based systems J. Comput. Secur. 2010 18 5 799-837
[127]
Rackoff C., Simon D.R.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum J. (ed.) CRYPTO, LNCS, vol. 576, pp. 433–444. Springer (1991).
[128]
Rao Y.S., Dutta R.: Decentralized ciphertext-policy attribute-based encryption scheme with fast decryption. In: Decker B.D., Dittmann J., Kraetzer C., Vielhauer C. (eds.) CMS, LNCS, vol. 8099, pp. 66–81. Springer (2013).
[129]
Rogaway P., Shrimpton T.: Cryptographic hash-function basics: Definitions, implications, and separations for preimage resistance, second-preimage resistance, and collision resistance. In: Roy B.K., Meier W. (eds.) FSE, LNCS, vol. 3017, pp. 371–388. Springer (2004).
[130]
Rouselakis Y., Waters B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: CCS, pp. 463–474. ACM (2013).
[131]
Rouselakis Y., Waters B.: Efficient statically-secure large-universe multi-authority attribute-based encryption. In: Böhme R., Okamoto T. (eds.) FC, LNCS, vol. 8975, pp. 315–332. Springer (2015).
[132]
Sahai A., Seyalioglu H., Waters B.: Dynamic credentials and ciphertext delegation for attribute-based encryption. In: CRYPTO, pp. 199–217. Springer (2012).
[133]
Sahai A., Waters B.: Fuzzy identity-based encryption. In: EUROCRYPT, pp. 457–473. Springer (2005).
[134]
Sandhu RS, Coyne EJ, Feinstein HL, and Youman CE Role-based access control models Computer 1996 29 2 38-47
[135]
Sandhu RS and Samarati P Access control: principles and practice IEEE Commun. Mag. 1994 32 9 40-48
[136]
Santos N., Rodrigues R., Gummadi K.P., Saroiu S.: Policy-sealed data: A new abstraction for building trusted cloud services. In: USENIX Security Symposium, pp. 175–188. USENIX Association (2012).
[137]
Shamir A How to share a secret Commun. ACM 1979 22 11 612-613
[138]
Shoup V.: Lower bounds for discrete logarithms and related problems. In: Fumy W. (ed.) EUROCRYPT, LNCS, vol. 1233, pp. 256–266. Springer (1997).
[139]
Sweeney L Weaving technology and policy together to maintain confidentiality The Journal of Law, Medicine & Ethics 1997 25 2–3 98-110
[140]
Takashima K.: Expressive attribute-based encryption with constant-size ciphertexts from the decisional linear assumption. In: SCN, pp. 298–317. Springer (2014).
[141]
Tomida J., Kawahara Y., Nishimaki R.: Fast, compact, and expressive attribute-based encryption. In: PKC, pp. 3–33. Springer (2020).
[142]
Venema M., Alpár G.: A bunch of broken schemes: A simple yet powerful linear approach to analyzing security of attribute-based encryption. In: Paterson K.G. (ed.) CT-RSA, LNCS, vol. 12704, pp. 100–125. Springer (2021).
[143]
Waters B.: Ciphertext-policy attribute-based encryption: An expressive, efficient, and provably secure realization. Cryptology ePrint Archive, Report 2008/290 (2008).
[144]
Waters B.: Dual system encryption: Realizing fully secure IBE and HIBE under simple assumptions. In: Halevi S. (ed.) CRYPTO, LNCS, vol. 5677, pp. 619–636. Springer (2009).
[145]
Waters B.: Ciphertext-policy attribute-based encryption - an expressive, efficient, and provably secure realization. In: PKC, pp. 53–70. Springer (2011).
[146]
Wee H.: Dual system encryption via predicate encodings. In: TCC, pp. 616–637. Springer (2014).
[147]
Yamada S., Attrapadung N., Hanaoka G., Kunihiro N.: Generic constructions for chosen-ciphertext secure attribute based encryption. In: Catalano D., Fazio N., Gennaro R., Nicolosi A. (eds.) PKC, LNCS, vol. 6571, pp. 71–89. Springer (2011).
[148]
Yamada S., Attrapadung N., Hanaoka G., Kunihiro N.: A framework and compact constructions for non-monotonic attribute-based encryption. In: PKC, pp. 275–292. Springer (2014).
[149]
Yu S., Wang C., Ren K., Lou W.: Attribute based data sharing with attribute revocation. In: Feng D., Basin D.A., Liu P. (eds.) ASIACCS, pp. 261–270. ACM (2010).
[150]
Zeutro: The openabe library - open source cryptographic library with attribute-based encryption implementations in c/c++. https://github.com/zeutro/openabe
[151]
Zhang K., Gong J., Tang S., Chen J., Li X., Qian H., Cao Z.: Practical and efficient attribute-based encryption with constant-size ciphertexts in outsourced verifiable computation. In: Chen X., Wang X., Huang X. (eds.) ASIACCS, pp. 269–279. ACM (2016).

Cited By

View all
  • (2024)ISABELLA: Improving Structures of Attribute-Based Encryption Leveraging Linear AlgebraProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690371(4628-4642)Online publication date: 2-Dec-2024
  • (2023)ACABELLA: Automated (Crypt)analysis of Attribute-Based Encryption Leveraging Linear AlgebraProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3616576(3269-3283)Online publication date: 15-Nov-2023
  • (2023)Dually Computable Cryptographic Accumulators and Their Application to Attribute Based EncryptionCryptology and Network Security10.1007/978-981-99-7563-1_24(538-562)Online publication date: 30-Oct-2023
  • Show More Cited By

Index Terms

  1. Systematizing core properties of pairing-based attribute-based encryption to uncover remaining challenges in enforcing access control in practice
          Index terms have been assigned to the content through auto-classification.

          Recommendations

          Comments

          Please enable JavaScript to view thecomments powered by Disqus.

          Information & Contributors

          Information

          Published In

          cover image Designs, Codes and Cryptography
          Designs, Codes and Cryptography  Volume 91, Issue 1
          Jan 2023
          300 pages

          Publisher

          Kluwer Academic Publishers

          United States

          Publication History

          Published: 06 September 2022
          Accepted: 16 July 2022
          Revision received: 21 March 2022
          Received: 13 September 2021

          Author Tags

          1. Attribute-based encryption
          2. Access control
          3. Systematization of knowledge

          Author Tags

          1. 94A60
          2. 68P27
          3. 68M25

          Qualifiers

          • Research-article

          Contributors

          Other Metrics

          Bibliometrics & Citations

          Bibliometrics

          Article Metrics

          • Downloads (Last 12 months)0
          • Downloads (Last 6 weeks)0
          Reflects downloads up to 09 Jan 2025

          Other Metrics

          Citations

          Cited By

          View all
          • (2024)ISABELLA: Improving Structures of Attribute-Based Encryption Leveraging Linear AlgebraProceedings of the 2024 on ACM SIGSAC Conference on Computer and Communications Security10.1145/3658644.3690371(4628-4642)Online publication date: 2-Dec-2024
          • (2023)ACABELLA: Automated (Crypt)analysis of Attribute-Based Encryption Leveraging Linear AlgebraProceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security10.1145/3576915.3616576(3269-3283)Online publication date: 15-Nov-2023
          • (2023)Dually Computable Cryptographic Accumulators and Their Application to Attribute Based EncryptionCryptology and Network Security10.1007/978-981-99-7563-1_24(538-562)Online publication date: 30-Oct-2023
          • (2023)GLUE: Generalizing Unbounded Attribute-Based Encryption for Flexible Efficiency Trade-OffsPublic-Key Cryptography – PKC 202310.1007/978-3-031-31368-4_23(652-682)Online publication date: 7-May-2023

          View Options

          View options

          Media

          Figures

          Other

          Tables

          Share

          Share

          Share this Publication link

          Share on social media