[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Nephele streaming: stream processing under QoS constraints at scale

Published: 01 March 2014 Publication History

Abstract

The ability to process large numbers of continuous data streams in a near-real-time fashion has become a crucial prerequisite for many scientific and industrial use cases in recent years. While the individual data streams are usually trivial to process, their aggregated data volumes easily exceed the scalability of traditional stream processing systems.
At the same time, massively-parallel data processing systems like MapReduce or Dryad currently enjoy a tremendous popularity for data-intensive applications and have proven to scale to large numbers of nodes. Many of these systems also provide streaming capabilities. However, unlike traditional stream processors, these systems have disregarded QoS requirements of prospective stream processing applications so far.
In this paper we address this gap. First, we analyze common design principles of today's parallel data processing frameworks and identify those principles that provide degrees of freedom in trading off the QoS goals latency and throughput. Second, we propose a highly distributed scheme which allows these frameworks to detect violations of user-defined QoS constraints and optimize the job execution without manual interaction. As a proof of concept, we implemented our approach for our massively-parallel data processing framework Nephele and evaluated its effectiveness through a comparison with Hadoop Online.
For an example streaming application from the multimedia domain running on a cluster of 200 nodes, our approach improves the processing latency by a factor of at least 13 while preserving high data throughput when needed.

References

[1]
Hadoop online prototype--Google project hosting (2012). http://code.google.com/p/hop/
[2]
Justin.tv--streaming live video broadcasts for everyone (2012). http://www.justin.tv/
[3]
Livestream--be there (2012). http://www.livestream.com/
[4]
Nathanmarz/storm--GitHub (2012). https://github.com/nathanmarz/storm
[5]
Stratosphere--above the clouds (2012). http://stratosphere.eu/
[6]
USTREAM, you're on (2012). http://www.ustream.tv/
[7]
Welcome to apache Hadoop! (2012). http://http://hadoop.apache.org/
[8]
Xuggle (2012). http://http://www.xuggle.com/
[9]
Abadi, D., Ahmad, Y., Balazinska, M., Cetintemel, U., Cherniack, M., Hwang, J., Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., et al.: The design of the Borealis stream processing engine. In: Second Biennial Conference on Innovative Data Systems Research (CIDR '05), pp. 277---289 (2005)
[10]
Abadi, D., Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Stonebraker, M., Tatbul, N., Zdonik, S.: Aurora: a new model and architecture for data stream management. VLDB J. 12(2), 120---139 (2003)
[11]
Aldinucci, M., Danelutto, M.: Stream parallel skeleton optimization. In: Proc. of the 11th IASTED International Conference on Parallel and Distributed Computing and Systems (PDCS '99), pp. 955---962. IASTED/ACTA Press, Cambridge (1999). ftp://ftp.di.unipi.it/pub/Papers/aldinuc/302-114.ps.gz
[12]
Alexandrov, A., Ewen, S., Heimel, M., Hueske, F., Kao, O., Markl, V., Nijkamp, E., Warneke, D.: MapReduce and PACT--comparing data parallel programming models. In: Proc. of the 14th Conference on Database Systems for Business, Technology, and Web (BTW '11), pp. 25---44. GI, Bonn (2011)
[13]
Babu, S., Widom, J.: Continuous queries over data streams. SIGMOD Rec. 30, 109---120 (2001)
[14]
Battré, D., Ewen, S., Hueske, F., Kao, O., Markl, V., Warneke, D.: Nephele/PACTs: a programming model and execution framework for web-scale analytical processing. In: Proc. of the 1st ACM Symposium on Cloud Computing (SoCC '10), pp. 119---130. ACM, New York (2010)
[15]
Battré, D., Hovestadt, M., Lohrmann, B., Stanik, A., Warneke, D.: Detecting bottlenecks in parallel DAG-based data flow programs. In: Proc. of the 2010 IEEE Workshop on Many-Task Computing on Grids and Supercomputers (MTAGS '10), pp. 1---10. IEEE Press, New York (2010)
[16]
Borkar, V., Carey, M., Grover, R., Onose, N., Vernica, R.: Hyracks: a flexible and extensible foundation for data-intensive computing. In: Proc. of the 2011 IEEE 27th International Conference on Data Engineering (ICDE '11), pp. 1151---1162. IEEE Press, New York (2011). http://dx.doi.org/10.1109/ICDE.2011.5767921.
[17]
Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Cetintemel, U., Xing, Y., Zdonik, S.: Scalable distributed stream processing. In: Proc. of the First Biennial Conference on Innovative Data Systems Research (CIDR '03), pp. 257---268 (2003)
[18]
Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapReduce online. In: Proc. of the 7th USENIX Conference on Networked Systems Design and Implementation (NSDI '10), USENIX Association, Berkeley (2010). p. 21
[19]
Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107---113 (2008)
[20]
Elnozahy, E.N.M., Alvisi, L., Wang, Y.M., Johnson, D.B.: A survey of rollback-recovery protocols in message-passing systems. ACM Comput. Surv. 34(3), 375---408 (2002).
[21]
Isard, M., Budiu, M., Yu, Y., Birrell, A., Fetterly, D.: Dryad: distributed data-parallel programs from sequential building blocks. Oper. Syst. Rev. 41(3), 59---72 (2007)
[22]
Lam, W., Liu, L., Prasad, S., Rajaraman, A., Vacheri, Z., Doan, A.: Muppet: mapreduce-style processing of fast data. Proc. VLDB Endow. 5(12), 1814---1825 (2012)
[23]
Li, B., Mazur, E., Diao, Y., McGregor, A., Shenoy, P.: A platform for scalable one-pass analytics using mapreduce. In: Proceedings of the 2011 ACM SIGMOD International Conference on Management of Data (SIGMOD '11), pp. 985---996. ACM, New York (2011)
[24]
Lohrmann, B., Warneke, D., Kao, O.: Massively-parallel stream processing under QoS constraints with Nephele. In: Proceedings of the 21st International Symposium on High-Performance Parallel and Distributed Computing (HPDC '12), pp. 271---282. ACM, New York (2012)
[25]
Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G., Olston, C., Rosenstein, J., Varma, R.: Query processing, approximation, and resource management in a data stream management system. In: First Biennial Conference on Innovative Data Systems Research (CIDR '03), pp. 245---256 (2003)
[26]
Murray, D., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A., Hand, S.: CIEL: a universal execution engine for distributed data-flow computing. In: Proc. of the 8th USENIX Conference on Networked Systems Design and Implementation (NSDI '11), USENIX Association, Berkeley (2011). p. 9
[27]
Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream computing platform. In: 2010 IEEE International Conference on Data Mining Workshops (ICDMW '10), pp. 170---177. IEEE Press, New York (2010)
[28]
Warneke, D., Kao, O.: Exploiting dynamic resource allocation for efficient parallel data processing in the cloud. IEEE Trans. Parallel Distrib. Syst. 22(6), 985---997 (2011)

Cited By

View all
  • (2023)On Improving Streaming System Autoscaler Behaviour using Windowing and Weighting MethodsProceedings of the 17th ACM International Conference on Distributed and Event-based Systems10.1145/3583678.3596886(68-79)Online publication date: 27-Jun-2023
  • (2022)Runtime Adaptation of Data Stream Processing Systems: The State of the ArtACM Computing Surveys10.1145/351449654:11s(1-36)Online publication date: 9-Sep-2022
  • (2020)InferLineProceedings of the 11th ACM Symposium on Cloud Computing10.1145/3419111.3421285(477-491)Online publication date: 12-Oct-2020
  • Show More Cited By
  1. Nephele streaming: stream processing under QoS constraints at scale

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Cluster Computing
    Cluster Computing  Volume 17, Issue 1
    March 2014
    148 pages

    Publisher

    Kluwer Academic Publishers

    United States

    Publication History

    Published: 01 March 2014

    Author Tags

    1. Distributed systems
    2. Latency
    3. Massively-parallel
    4. QoS
    5. Stream processing

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 11 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2023)On Improving Streaming System Autoscaler Behaviour using Windowing and Weighting MethodsProceedings of the 17th ACM International Conference on Distributed and Event-based Systems10.1145/3583678.3596886(68-79)Online publication date: 27-Jun-2023
    • (2022)Runtime Adaptation of Data Stream Processing Systems: The State of the ArtACM Computing Surveys10.1145/351449654:11s(1-36)Online publication date: 9-Sep-2022
    • (2020)InferLineProceedings of the 11th ACM Symposium on Cloud Computing10.1145/3419111.3421285(477-491)Online publication date: 12-Oct-2020
    • (2020)Resource Management and Scheduling in Distributed Stream Processing SystemsACM Computing Surveys10.1145/335539953:3(1-41)Online publication date: 28-May-2020
    • (2019)Combining it allProceedings of the 20th International Middleware Conference10.1145/3361525.3361551(255-267)Online publication date: 9-Dec-2019
    • (2019)A Comprehensive Survey on Parallelization and Elasticity in Stream ProcessingACM Computing Surveys10.1145/330384952:2(1-37)Online publication date: 30-Apr-2019
    • (2018)SpinStreamsProceedings of the 19th International Middleware Conference10.1145/3274808.3274814(66-79)Online publication date: 26-Nov-2018
    • (2017)A Stepwise Auto-Profiling Method for Performance Optimization of Streaming ApplicationsACM Transactions on Autonomous and Adaptive Systems10.1145/313261812:4(1-33)Online publication date: 14-Nov-2017
    • (2017)Online Reconstruction of Structural Information from Datacenter LogsProceedings of the Twelfth European Conference on Computer Systems10.1145/3064176.3064195(344-358)Online publication date: 23-Apr-2017
    • (2017)Exploring Shared State in Key-Value Store for Window-Based Multi-Pattern Streaming AnalyticsProceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing10.1109/CCGRID.2017.126(1044-1052)Online publication date: 14-May-2017
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media