[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Knowledge cores in large formal contexts

Published: 01 June 2022 Publication History

Abstract

Knowledge computation tasks, such as computing a base of valid implications, are often infeasible for large data sets. This is in particular true when deriving canonical bases in formal concept analysis (FCA). Therefore, it is necessary to find techniques that on the one hand reduce the data set size, but on the other hand preserve enough structure to extract useful knowledge. Many successful methods are based on random processes to reduce the size of the investigated data set. This, however, makes them hardly interpretable with respect to the discovered knowledge. Other approaches restrict themselves to highly supported subsets and omit rare and (maybe) interesting patterns. An essentially different approach is used in network science, called k-cores. These cores are able to reflect rare patterns, as long as they are well connected within the data set. In this work, we study k-cores in the realm of FCA by exploiting the natural correspondence of bi-partite graphs and formal contexts. This structurally motivated approach leads to a comprehensible extraction of knowledge cores from large formal contexts.

References

[1]
Ahmed, A., Batagelj, V., Fu, X., Hong, S.H., Merrick, D., Mrvar, A.: Visualisation and analysis of the internet movie database. In: S.H. Hong, K.L. Ma (eds.) APVIS, pp. 17–24. IEEE Computer Society. http://dblp.uni-trier.de/db/conf/apvis/apvis2007.html#AhmedBFHMM07 (2007)
[2]
Andrews, S., Orphanides, C.: Analysis of large data sets using formal concept lattices. In: M. Kryszkiewicz, S.A. Obiedkov (eds.) CLA, vol. 672, pp. 104–115. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2010.html#AndrewsO10 (2010)
[3]
Aswanikumar C and Srinivas S Concept lattice reduction using fuzzy k-means clustering Expert Syst. Appl. 2010 37 3 2696-2704 http://dblp.uni-trier.de/db/journals/eswa/eswa37.html#AswanikumarS10
[4]
Borchmann, D., Hanika, T.: Some experimental results on randomly generating formal contexts. In: M. Huchard, S. Kuznetsov (eds.) CLA, CEUR Workshop Proceedings, vol. 1624, pp. 57–69. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2016.html#BorchmannH16 (2016)
[5]
Codocedo, V., Taramasco, C., Astudillo, H.: Cheating to achieve formal concept analysis over a large formal context. In: A. Napoli, V. Vychodil (eds.) CLA, vol. 959, pp. 349–362. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/cla/cla2011.html#CodocedoTA11 (2011)
[6]
Degens, P., Hermes, H., Opitz, O. (eds.): Implikationen Und Abhängigkeiten Zwischen Merkmalen. Studien Zur Klassifikation. Indeks, Frankfurt (1986)
[7]
Distel F and Sertkaya B On the complexity of enumerating pseudo-intents Discrete Applied Mathematics 2011 159 6 450-466 http://dblp.uni-trier.de/db/journals/dam/dam159.html#DistelS11
[8]
Doerfel, S., Jäschke, R.: An analysis of tag-recommender evaluation procedures. In: In: Q. Yang, I. King, Q. Li, P. Pu, G. Karypis (eds.) RecSys ’13, pp. 343–346. ACM. (2013)
[9]
Dua, D., Graff, C.: UCI machine learning repository. http://archive.ics.uci.edu/ml (2017)
[10]
Fischer, J., Vreeken, J.: Sets of robust rules, and how to find them. In: ECML/PKDD. https://ecmlpkdd2019.org/downloads/paper/650.pdf (2019)
[11]
Ganter, B.: Two basic algorithms in concept analysis. In: L. Kwuida, B. Sertkaya (eds.) Formal Concept Analysis, LNCS, vol. 5986, pp. 312–340. Springer Berlin Heidelberg. (2010)
[12]
Ganter, B., Wille, R.: Implikationen Und Abhangigkeiten̈ Zwischen Merkmalen. In: Degens, P. O., Hermes, H. J. Opitz, O.(eds.) Die Klassifikation Und Ihr Umfeld, pp. 171-185. Indeks, Frankfurt (1986)
[13]
Ganter B and Wille R Formal Concept Analysis: Mathematical Foundations 1999 Berlin Springer-Verlag
[14]
Ghani AC, Swinton J, and Garnett GP The role of sexual partnership networks in the epidemiology of gonorrhea Sexually transmitted diseases 1997 24 1 45-56
[15]
Guigues JL and Duquenne V Familles minimales d’implications informatives résultant d’un tableau de données binaires Mathématiques et Sciences Humaines 1986 95 5-18 http://eudml.org/doc/94331
[16]
Hanika, T., Hirth, J.: Conexp-clj - a research tool for FCA. In: D. Cristea, F.L. Ber, R. Missaoui, L. Kwuida, B. Sertkaya (eds.) ICFCA (Supplements), vol. 2378, pp. 70–75. CEUR-WS.org. http://dblp.uni-trier.de/db/conf/icfca/icfca2019suppl.html#HanikaH19 (2019)
[17]
Hanika, T., Koyda, M., Stumme, G.: Relevant attributes in formal contexts. In: D. Endres, M. Alam, D. Sotropa (eds.) ICCS, LNCS, vol. 11530, pp. 102–116. Springer. (2019)
[18]
Hanika, T., Marx, M., Stumme, G.: Discovering implicational knowledge in wikidata. In: D. Cristea, F.L. Ber, B. Sertkaya (eds.) Formal Concept Analysis - 15th International Conference, ICFCA 2019, Proceedings, LNCS, vol. 11511, pp. 315–323. Springer. (2019)
[19]
Healy, J., Janssen, J.C.M., Milios, E.E., Aiello, W.: Characterization of graphs using degree cores. In: W. Aiello, A.Z. Broder, J.C.M. Janssen, E.E. Milios (eds.) WAW, LNCS, vol. 4936, pp. 137–148. Springer. http://dblp.uni-trier.de/db/conf/waw/waw2006.html#HealyJMA06 (2006)
[20]
Kitsak M, Gallos LK, Havlin S, Liljeros F, Muchnik L, Stanley HE, and Makse HAIdentification of influential spreaders in complex networksNature Physics2010611888-89310.1038/nphys1746
[21]
Kuznetsov S On the intractability of computing the Duquenne-Guigues base Journal of Universal Computer Science 2004 10 8 927-933
[22]
Kuznetsov, S.O., Obiedkov, S.A., Roth, C.: Reducing the representation complexity of lattice-based taxonomies. In: U. Priss, S. Polovina, R. Hill (eds.) Conceptual Structures: Knowledge Architectures for Smart Applications, 15th International Conference on Conceptual Structures, ICCS 2007, Sheffield, UK, July 22-27, 2007, Proceedings, Lecture Notes in Computer Science, vol. 4604, pp. 241–254. Springer. (2007)
[23]
Mahn M Gewürze : Das Standardwerk 2014 München Christian Verlag GmbH
[24]
Matula DW and Beck LL Smallest-last ordering and clustering and graph coloring algorithms J. ACM 1983 30 3 417-427 http://dblp.uni-trier.de/db/journals/jacm/jacm30.html#MatulaB83
[25]
Pastor-Satorras R, Castellano C, Van Mieghem P, and Vespignani AEpidemic processes in complex networksReviews of Modern Physics2015873925-97910.1103/RevModPhys.87.925
[26]
Roth C, Obiedkov SA, and Kourie DG On succinct representation of knowledge community taxonomies with formal concept analysis Int. J. Found. Comput. Sci. 2008 19 2 383-404 http://dblp.uni-trier.de/db/journals/ijfcs/ijfcs19.html#RothOK08
[27]
Seidman SB Network structure and minimum degree Soc. Networks 1983 5 3 269-287
[28]
Soldano, H., Santini, G., Bouthinon, D., Bary, S., Lazega, E.: Bi-pattern mining of two mode and directed networks. In: P. Champin, F.L. Gandon, M. Lalmas, P.G. Ipeirotis (eds.) WWW Companion, pp. 1287–1294. ACM. (2018)
[29]
Stumme, G.: Efficient Data Mining Based on Formal Concept Analysis DEXA, LNCS, vol. 2453, pp. 534–546. Springer (2002)
[30]
Stumme G, Taouil R, Bastide Y, Pasquier N, and Lakhal L Computing iceberg concept lattices with titanic Data & Knowledge Engineering 2002 42 2 189-222
[31]
Tatti N, Moerchen F, and Calders TFinding robust itemsets under subsamplingACM Trans. Database Syst.201439320:1-20:2710.1145/2656261
[32]
Valtchev, P., Duquenne, V.: On the merge of factor canonical bases. In: R. Medina, S.A. Obiedkov (eds.) ICFCA, LNCS, vol. 4933, pp. 182–198. Springer. (2008)
[33]
Wille, R.: Ordered Sets: Proc. of the NATO Adv. Study Institute Held at Banff, Canada, August 28 to September 12, 1981, Chap. Restructuring Lattice Theory1 An Approach Based on Hierarchies of Concepts, pp. 445–470. Springer, Dordrecht (1982)
[34]
Zaki MJ and Hsiao CEfficient algorithms for mining closed itemsets and their lattice structureIEEE Transactions on Knowledge and Data Engineering2005174462-47810.1109/TKDE.2005.60

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Annals of Mathematics and Artificial Intelligence
Annals of Mathematics and Artificial Intelligence  Volume 90, Issue 6
Jun 2022
138 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 June 2022
Accepted: 24 February 2022

Author Tags

  1. k-cores
  2. Bi-Partite graphs
  3. Formal concept analysis
  4. Lattices
  5. Implications
  6. Knowledge base

Qualifiers

  • Research-article

Funding Sources

  • Universität Kassel (3154)

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media