[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A probabilistic argumentation framework for reinforcement learning agents

Published: 01 March 2019 Publication History

Abstract

A bounded-reasoning agent may face two dimensions of uncertainty: firstly, the uncertainty arising from partial information and conflicting reasons, and secondly, the uncertainty arising from the stochastic nature of its actions and the environment. This paper attempts to address both dimensions within a single unified framework, by bringing together probabilistic argumentation and reinforcement learning. We show how a probabilistic rule-based argumentation framework can capture Markov decision processes and reinforcement learning agents; and how the framework allows us to characterise agents and their argument-based motivations from both a logic-based perspective and a probabilistic perspective. We advocate and illustrate the use of our approach to capture models of agency and norms, and argue that, in addition to providing a novel method for investigating agent types, the unified framework offers a sound basis for taking a mentalistic approach to agent profiles.

References

[1]
Alexy, R. (1989). A theory of legal argumentation: The theory of rational discourse as theory of legal justification. Oxford: Clarendon.
[2]
Amgoud, L. (2009). Argumentation for decision making. In Argumentation in artificial intelligence (pp. 301---320). Springer.
[3]
Artikis, A., Sergot, M., & Pitt, J. (2009). Specifying norm-governed computational societies. ACM Transactions on Computational Logic, 10(1), 1:1---1:42.
[4]
Artikis, A., Sergot, M., Pitt, J., Busquets, D., & Riveret, R. (2016). Specifying and executing open multi-agent systems. In Social coordination frameworks for social technical systems (pp. 197---212). Springer.
[5]
Atkinson, K., Baroni, P., Giacomin, M., Hunter, A., Prakken, H., Reed, C., et al. (2017). Towards artificial argumentation. AI Magazine, 38(3), 25---36.
[6]
Atkinson, K., & Bench-Capon, T. J. M. (2007). Practical reasoning as presumptive argumentation using action based alternating transition systems. Artificial Intellignence, 171(10---15), 855---874.
[7]
Baroni, P., Caminada, M., & Giacomin, M. (2011). An introduction to argumentation semantics. The Knowledge Engineering Review, 26(4), 365---410.
[8]
Baroni, P., Governatori, G., & Riveret, R. (2016). On labelling statements in multi-labelling argumentation. In Proceedings of the 22nd European conference on artificial intelligence (Vol. 285, pp. 489---497). IOS Press.
[9]
Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Proceedings of the National Academy of Sciences of the United States of America, 42(10), 767.
[10]
Bench-Capon, T. J. M., & Atkinson, K. (2009). Abstract argumentation and values. In L. Rahwan & G. Simari (eds.) Argumentation in artificial intelligence. Springer.
[11]
Bertsekas, D. P. (1995). Dynamic programming and optimal control (Vol. 1). Belmont, MA: Athena Scientific.
[12]
Besnard, P., García, A. J., Hunter, A., Modgil, S., Prakken, H., Simari, G. R., et al. (2014). Introduction to structured argumentation. Argument & Computation, 5(1), 1---4.
[13]
Broersen, J., Dastani, M., Hulstijn, J., & van der Torre, L. (2002). Goal generation in the BOID architecture. Cognitive Science Quarterly, 2(3---4), 428---447.
[14]
Chen, S. H., & Huang, Y. C. (2005). Risk preference and survival dynamics. In: Agent-based simulation: From modeling methodologies to real-world applications, Agent-based social systems (Vol. 1, pp. 135---143). Tokyo: Springer.
[15]
Conte, R., & Castelfranchi, C. (1995). Cognitive and social action. London: University College of London Press.
[16]
Conte, R., & Castelfranchi, C. (2006). The mental path of norms. Ratio Juris, 19, 501---517.
[17]
Conte, R., Falcone, R., & Sartor, G. (1999). Introduction: Agents and norms: How to fill the gap? Artificial Intelligence and Law, 7(1), 1---15.
[18]
Cormen, T. H., Leiserson, C. E., Rivest, R. L., Stein, C., et al. (2001). Introduction to algorithms (Vol. 2). Cambridge: MIT press.
[19]
Dung, P. M. (1995). On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artificial Intelligence, 77(2), 321---358.
[20]
Edmonds, B. (2004). How formal logic can fail to be useful for modelling or designing mas. In Regulated agent-based social systems, Lecture Notes in Computer Science (Vol. 2934, pp. 1---15). Springer.
[21]
Fasli, M. (2004). Formal systems and agent-based social simulation equals null? Journal of Artificial Societies and Social Simulation, 7(4), 1---7.
[22]
Fornara, N., & Colombetti, M. (2009). Specifying and enforcing norms in artificial institutions. In Declarative agent languages and technologies VI, Lecture Notes in Computer Science (Vol. 5397, pp. 1---17). Springer.
[23]
Fox, J., & Parsons, S. (1997). On using arguments for reasoning about actions and values. In Proceedings of the AAAI spring symposium on qualitative preferences in deliberation and practical reasoning.
[24]
Gao, Y., & Toni, F. (2014). Argumentation accelerated reinforcement learning for cooperativeulti-agent systems. In Proceedings of 21st European conference on artificial intelligence (pp. 333---338). IOS Press.
[25]
Gao, Y., Toni, F., & Craven, R. (2012). Argumentation-based reinforcement learning for robocup soccer keepaway. In Proceedings of 20th European conference on artificial intelligence (pp. 342---347). IOS Press.
[26]
Gaudou, B., Lorini, E., & Mayor, E. (2013). Moral guilt: An agent-based model analysis. In Advances in social simulation--Proceedings of the 9th conference of the european social simulation association (pp. 95---106).
[27]
Governatori, G., & Rotolo, A. (2008). BIO logical agents: Norms, beliefs, intentions in defeasible logic. Autonomous Agents and Multi-Agent Systems, 17(1), 36---69.
[28]
Hunter, A., & Thimm, M. (2017). Probabilistic reasoning with abstract argumentation frameworks. Journal of Artificial Intelligence Research, 59, 565---611.
[29]
Koller, D., & Friedman, N. (2009). Probabilistic graphical models: Principles and techniques--Adaptive computation and machine learning. Cambridge: The MIT Press.
[30]
Kostrikin, A. I., Manin, Y. I., & Alferieff, M. E. (1997). Linear algebra and geometry. Washington, DC: Gordon and Breach Science Publishers.
[31]
Modgil, S., & Caminada, M. (2009). Proof theories and algorithms for abstract argumentation frameworks. In Argumentation in artificial intelligence (pp. 105---129). Springer.
[32]
Muller, J., & Hunter, A. (2012). An argumentation-based approach for decision making. In 24th international conference on tools with artificial intelligence (Vol. 1, pp. 564---571). IEEE.
[33]
Ng, A., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations: theory and application to reward shaping. In Proceedings of 16th international conference on machine learning (pp. 278---287).
[34]
Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger, E., & Liang, E. (2006). Autonomous inverted helicopter flight via reinforcement learning. In Experimental robotics IX (pp. 363---372). Springer.
[35]
Oren, N. (2014). Argument schemes for normative practical reasoning (pp. 63---78). Berlin: Springer.
[36]
Parsons, S., & Fox, J. (1996). Argumentation and decision making: A position paper. In Practical reasoning (pp. 705---709). Springer.
[37]
Pattaro, E. (2005). The law and the right. In E. Pattaro (Ed.), Treatise of legal philosophy and general jurisprudence (Vol. 1). Berlin: Springer.
[38]
Pollock, J. L. (1995). Cognitive carpentry: A blueprint for how to build a person. Cambridge, MA: MIT Press.
[39]
Prakken, H. (2006). Combining sceptical epistemic reasoning with credulous practical reasoning. In Proceedings of the 1st conference on computational models of argument (pp. 311---322). IOS Press.
[40]
Prakken, H. (2011). An abstract framework for argumentation with structured arguments. Argument and Computation, 1(2), 93---124.
[41]
Prakken, H., & Sartor, G. (1997). Argument-based extended logic programming with defeasible priorities. Journal of Applied Non-Classical Logics, 7(1---2), 25---75.
[42]
Prakken, H., & Sartor, G. (2015). Law and logic: A review from an argumentation perspective. Artificial Intelligence, 227, 214---245.
[43]
Rahwan, I., & Simari, G. R. (Eds.). (2009). Argumentation in artificial Intelligence. Berlin: Springer.
[44]
Riveret, R., Baroni, P., Gao, Y., Governatori, G., Rotolo, A., & Sartor, G. (2018). A labelling framework for probabilistic argumentation. Annals of Mathamatics and Artificial Intelligence, 83(1), 21---71.
[45]
Riveret, R., Korkinof, D., Draief, M., & Pitt, J. V. (2015). Probabilistic abstract argumentation: An investigation with boltzmann machines. Argumentation & Computation, 6(2), 178---218.
[46]
Riveret, R., Pitt, J. V., Korkinof, D., & Draief, M. (2015). Neuro-symbolic agents: Boltzmann machines and probabilistic abstract argumentation with sub-arguments. In Proceedings of the 14th international conference on autonomous agents and multiagent systems (pp. 1481---1489). ACM.
[47]
Riveret, R., Rotolo, A., & Sartor, G. (2012). Probabilistic rule-based argumentation for norm-governed learning agents. Artificial Intelligence and Law, 20(4), 383---420.
[48]
Ross, A. (1958). On law and justice. London: Stevens.
[49]
Rummery, G. A., & Niranjan, M. (1994). On-line Q-learning using connectionist systems. Technical report. University of Cambridge.
[50]
Sartor, G. (2005). Legal reasoning: A cognitive approach to the law. Berlin: Springer.
[51]
Shams, Z., Vos, M. D., Oren, N., Padget, J., & Satoh, K. (2015). Argumentation-based normative practical reasoning. In Proceedings of the 3rd international workshop on theory and applications of formal argumentation, revised selected papers (pp. 226---242). Springer.
[52]
Simari, G. I., Shakarian, P., & Falappa, M. A. (2016). A quantitative approach to belief revision in structured probabilistic argumentation. Annals of Mathematics and Artificial Intelligence, 76(3), 375---408.
[53]
Stone, P., Sutton, R. S., & Kuhlmann, G. (2005). Reinforcement learning for robocup soccer keepaway. Adaptive Behavior, 13, 165---188.
[54]
Sutton, R. S., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge: MIT Press.
[55]
Tadepalli, P., Givan, R., & Driessens, K. (2004). Relational reinforcement learning: An overview. In Proceedings of the ICML04 workshop on relational reinforcement learning.
[56]
van der Hoek, W., Roberts, M., & Wooldridge, M. (2007). Social laws in alternating time: Effectiveness, feasibility, and synthesis. Synthese, 156(1), 1---19.

Cited By

View all
  • (2024)Norm Augmented Reinforcement Learning Agents With Synthesized Normative RulesJournal of Cases on Information Technology10.4018/JCIT.34565026:1(1-34)Online publication date: 30-Jul-2024
  • (2021) Nova: Value-based Negotiation of NormsACM Transactions on Intelligent Systems and Technology10.1145/346505412:4(1-29)Online publication date: 1-Aug-2021
  • (2021)Complexity of Nonemptiness in Control Argumentation FrameworksSymbolic and Quantitative Approaches to Reasoning with Uncertainty10.1007/978-3-030-86772-0_9(117-129)Online publication date: 21-Sep-2021

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Autonomous Agents and Multi-Agent Systems
Autonomous Agents and Multi-Agent Systems  Volume 33, Issue 1-2
March 2019
274 pages

Publisher

Kluwer Academic Publishers

United States

Publication History

Published: 01 March 2019

Author Tags

  1. Markov decision process
  2. Norms
  3. Probabilistic argumentation
  4. Reinforcement learning

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 07 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Norm Augmented Reinforcement Learning Agents With Synthesized Normative RulesJournal of Cases on Information Technology10.4018/JCIT.34565026:1(1-34)Online publication date: 30-Jul-2024
  • (2021) Nova: Value-based Negotiation of NormsACM Transactions on Intelligent Systems and Technology10.1145/346505412:4(1-29)Online publication date: 1-Aug-2021
  • (2021)Complexity of Nonemptiness in Control Argumentation FrameworksSymbolic and Quantitative Approaches to Reasoning with Uncertainty10.1007/978-3-030-86772-0_9(117-129)Online publication date: 21-Sep-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media