[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Blowup Mechanism for a Fluid-Particle Interaction System in R3

Published: 01 December 2020 Publication History

Abstract

We study the Cauchy problem and the mixed initial boundary value problem of a fluid-particle interaction system in R3. A Serrin type criterion for the strong solution of the Cauchy problem is established in terms of ρLtLx and uLtsLxr, where 2/s+3/r1 and 3<r. In view of some useful integral inequalities, we prove the life span estimates of the regular solution.

References

[1]
Ballew, J.: Mathematical topics in fluid-particle interaction. PHD dissertation, University of Maryland, USA (2014)
[2]
Ballew J. and Trivisa K.Suitable weak solutions and low stratification singular limit for a fluid particle interaction modelQ. Appl. Math.201270469-4942986131
[3]
Ballew J. and Trivisa K.Weakly dissipative solutions and weak-strong uniqueness for the Navier-Stokes-Smoluchowski systemNonlinear Anal.201391121-193081207
[4]
Carrillo J.A. and Goudon T.Stability and asymptotic analysis of a fluid-particle interaction modelCommun. Partial Differ. Equ.2006311349-13792254618
[5]
Chen Y.S., Ding S.J., and Wang W.J.Global existence and time-decay estimates of solutions to the compressible Navier-Stokes-Smoluchowski equationsDiscrete Contin. Dyn. Syst., Ser. A201636105287-53073543548
[6]
Cho Y., Choe H.J., and Kim H.Unique solvability of the initial boundary value problems for compressible viscous fluidsJ. Math. Pures Appl.200483243-2752038120
[7]
Constantin P. and Masmoudi N.Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2DCommun. Math. Phys.2008278179-1912367203
[8]
Ding S.J., Huang B.Y., and Lu Y.B.Blowup criterion for the compressible fluid-particle interaction model in 3D with vacuumActa Math. Sci.201636B41030-10483514368
[9]
Ding S.J., Huang B.Y., and Wen H.Y. Global well-posedness of classical solutions to a fluid-particle interaction model in R3 J. Differ. Equ. 2017 263 12 8666-8717
[10]
Fang D.Y., Zi R.Z., and Zhang T.Global classical large solutions to a 1D fluid-particle interaction model: the bubbling regimeJ. Math. Phys.2012533177-1932798245
[11]
Galdi G.P. An Introduction to the Mathematical Theory of the Navier-Stokes Equations 1994 New York Springer
[12]
Huang, B.Y.: Classical solutions of the Naiver-Stokes-Smoluchoski equations for the Cauchy problem. Doctoral Dissertation, South China Normal University (2017)
[13]
Huang X.D., Li J., and Xin Z.P.Serrin-type criterion for the three-dimensional viscous compressible flowsSIAM J. Math. Anal.20114341872-18862831252
[14]
Huang X.D., Li J., and Xin Z.P. Blowup criterion for the compressible flows with vacuum states Commun. Math. Phys. 2011 301 23-35
[15]
Huang B.Y., Ding S.J., and Wen H.Y.Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuumDiscrete Contin. Dyn. Syst. Ser.2016961717-17523593404
[16]
Serrin J.On the interior regularity of weak solutions of the Navier-Stokes equationsArch. Ration. Mech. Anal.19629187-195136885
[17]
Wang G.W., Guo B.L., and Fang S.M.Blow-up of the smooth solutions to the compressible Navier-Stokes equationsMath. Methods Appl. Sci.201740145262-52723689262
[18]
Wen H.Y. and Zhu C.J.Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuumAdv. Math.201324817534-5723107521
[19]
Xu X.Y. and Zhang J.W.A blow-up criterion for 3D compressible magnetohydrodynamic equations with vacuumMath. Models Methods Appl. Sci.20122222887666
[20]
Zhang J.L., Song C.M., and Li H.Global solutions for the one-dimensional compressible Navier-Stokes-Smoluchowski systemJ. Math. Phys.20175853646758

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Acta Applicandae Mathematicae: an international survey journal on applying mathematics and mathematical applications
Acta Applicandae Mathematicae: an international survey journal on applying mathematics and mathematical applications  Volume 170, Issue 1
Dec 2020
1043 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 2020
Accepted: 13 April 2020
Received: 12 October 2019

Author Tags

  1. Compressible
  2. Fluid-particle interaction model
  3. Serrin type criterion
  4. The life span

Author Tags

  1. 35Q35
  2. 76N10

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media