[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

AutoCTS++: zero-shot joint neural architecture and hyperparameter search for correlated time series forecasting

Published: 30 July 2024 Publication History

Abstract

Sensors in cyber-physical systems often capture interconnected processes and thus emit correlated time series (CTS), the forecasting of which enables important applications. Recent deep learning based forecasting methods show strong capabilities at capturing both the temporal dynamics of time series and the spatial correlations among time series, thus achieving impressive accuracy. In particular, automated CTS forecasting, where a deep learning architecture is configured automatically, enables forecasting accuracy that surpasses what has been achieved by manual approaches. However, automated CTS forecasting remains in its infancy, as existing proposals are only able to find optimal architectures for predefined hyperparameters and for specific datasets and forecasting settings (e.g., short vs. long term forecasting). These limitations hinder real-world industrial application, where forecasting faces diverse datasets and forecasting settings. We propose AutoCTS++, a zero-shot, joint search framework, to efficiently configure effective CTS forecasting models (including both neural architectures and hyperparameters), even when facing unseen datasets and foreacsting settings. Specifically, we propose an architecture-hyperparameter joint search space by encoding candidate architecture and accompanying hyperparameters into a graph representation. We then introduce a zero-shot Task-aware Architecture-Hyperparameter Comparator (T-AHC) to rank architecture-hyperparameter pairs according to different tasks (i.e., datasets and forecasting settings). We propose zero-shot means to train T-AHC, enabling it to rank architecture-hyperparameter pairs given unseen datasets and forecasting settings. A final forecasting model is then selected from the top-ranked pairs. Extensive experiments involving multiple benchmark datasets and forecasting settings demonstrate that AutoCTS++ is able to efficiently devise forecasting models for unseen datasets and forecasting settings that are capable of outperforming existing manually designed and automated models.

References

[1]
Achille, A., Lam, M., Tewari, R., Ravichandran, A., Maji, S., Fowlkes, C.C., Soatto, S., Perona, P.: Task2Vec: task embedding for meta-learning. In: International Conference on Computer Vision, pp. 6430–6439 (2019)
[2]
Ansari, A.F., Stella, L., Turkmen, C., Zhang, X., Mercado, P., Shen, H., Shchur, O., Rangapuram, S.S., Arango, S.P., Kapoor, S., et al.: Chronos: learning the language of time series. arXiv preprint arXiv:2403.07815 (2024)
[3]
Bai, L., Yao, L., Li, C., Wang, X., Wang, C.: Adaptive graph convolutional recurrent network for traffic forecasting. In: NeurIPS, vol. 33, pp. 17804–17815 (2020)
[4]
Bengio, Y., Louradour, J., Collobert, R., Weston, J.: Curriculum learning. In: International Conference on Machine Learning, pp. 41–48 (2009)
[5]
Campos D, Kieu T, Guo C, Huang F, Zheng K, Yang B, and Jensen CS Unsupervised time series outlier detection with diversity-driven convolutional ensembles Proc. VLDB Endow. 2022 15 3 611-623
[6]
Campos, D., Yang, B., Kieu, T., Zhang, M., Guo, C., Jensen, C.S.: QCore: Data-efficient, on-device continual calibration for quantized models. In: Proceedings of the VLDB Endowment (2024)
[7]
Campos D, Zhang M, Yang B, Kieu T, Guo C, and Jensen CS LightTS: lightweight time series classification with adaptive ensemble distillation Proc. ACM Manag. Data 2023 1 2 171:1-171:27
[8]
Cao, K., You, J., Liu, J., Leskovec, J.: Autotransfer: AutoML with knowledge transfer—an application to graph neural networks. In: International Conference on Learning Representations (2023)
[9]
Chen, Y., Guo, Y., Chen, Q., Li, M., Zeng, W., Wang, Y., Tan, M.: Contrastive neural architecture search with neural architecture comparators. In: Conference on Computer Vision and Pattern Recognition pp. 9502–9511 (2021)
[10]
Cheng, Y., Chen, P., Guo, C., Zhao, K., Wen, Q., Yang, B., Jensen, C.S.: Weakly guided adaptation for robust time series forecasting. In: Proceedings of the VLDB Endowment (2024)
[11]
Cirstea, R., Guo, C., Yang, B., Kieu, T., Dong, X., Pan, S.: Triangular, variable-specific attentions for long sequence multivariate time series forecasting. In: IJCAI, pp. 1994–2001 (2022)
[12]
Cirstea, R., Yang, B., Guo, C., Kieu, T., Pan, S.: Towards spatio-temporal aware traffic time series forecasting. In: ICDE, pp. 2900–2913 (2022)
[13]
Cirstea, R.G., Kieu, T., Guo, C., Yang, B., Pan, S.J.: Enhancenet: plugin neural networks for enhancing correlated time series forecasting. In: ICDE, pp. 1739–1750 (2021)
[14]
Cirstea, R.G., Yang, B., Guo, C.: Graph attention recurrent neural networks for correlated time series forecasting. In: MileTS19@KDD (2019)
[15]
Dai, X., Wan, A., Zhang, P., Wu, B., He, Z., Wei, Z., Chen, K., Tian, Y., Yu, M., Vajda, P., et al.: Fbnetv3: joint architecture-recipe search using predictor pretraining. In: Conference on Computer Vision and Pattern Recognition, pp. 16276–16285 (2021)
[16]
Das, A., Kong, W., Sen, R., Zhou, Y.: A decoder-only foundation model for time-series forecasting. arXiv preprint arXiv:2310.10688 (2023)
[17]
Deng, J., Chen, X., Jiang, R., Yin, D., Yang, Y., Song, X., Tsang, I.W.: Disentangling structured components: Towards adaptive, interpretable and scalable time series forecasting. IEEE Transactions on Knowledge and Data Engineering (2024)
[18]
Dong, X., Tan, M., Yu, A.W., Peng, D., Gabrys, B., Le, Q.V.: Autohas: Efficient hyperparameter and architecture search. arXiv preprint arXiv:2006.03656 (2020)
[19]
Dudziak, L., Chau, T., Abdelfattah, M., Lee, R., Kim, H., Lane, N.: Prediction-based NAS using GCNs. In: BRP-NAS: Advances in Neural Information Processing Systems, vol. 33, pp. 10480–10490 (2020)
[20]
El, O.B., Milo, T., Somech, A.: Automatically generating data exploration sessions using deep reinforcement learning, pp. 1527–1537 (2020)
[21]
Guo, C., Xu, R., Yang, B., Yuan, Y., Kieu, T., Zhao, Y., Jensen, C.S.: Efficient stochastic routing in path-centric uncertain road networks. In: Proceedings of the VLDB Endowment (2024)
[22]
Guo C, Yang B, Hu J, Jensen CS, and Chen L Context-aware, preference-based vehicle routing VLDB J. 2020 29 5 1149-1170
[23]
Guo, Z., Zhang, X., Mu, H., Heng, W., Liu, Z., Wei, Y., Sun, J.: Single path one-shot neural architecture search with uniform sampling. In: European Conference on Computer Vision, pp. 544–560 (2020)
[24]
Jiang, J., Han, C., Zhao, W.X., Wang, J.: Pdformer: Propagation delay-aware dynamic long-range transformer for traffic flow prediction. arXiv preprint arXiv:2301.07945 (2023)
[25]
Jin, G., Liang, Y., Fang, Y., Shao, Z., Huang, J., Zhang, J., Zheng, Y.: Spatio-temporal graph neural networks for predictive learning in urban computing: A survey. IEEE Trans. Knowl. Data Eng. (2023)
[26]
Jin, M., Wang, S., Ma, L., Chu, Z., Zhang, J.Y., Shi, X., Chen, P.Y., Liang, Y., Li, Y.F., Pan, S., et al.: Time-llm: time series forecasting by reprogramming large language models. arXiv preprint arXiv:2310.01728 (2023)
[27]
Jin, M., Wen, Q., Liang, Y., Zhang, C., Xue, S., Wang, X., Zhang, J., Wang, Y., Chen, H., Li, X., et al.: Large models for time series and spatio-temporal data: a survey and outlook. arXiv preprint arXiv:2310.10196 (2023)
[28]
Jin M, Zheng Y, Li Y, Chen S, Yang B, and Pan S Multivariate time series forecasting with dynamic graph neural odes IEEE Trans. Knowl. Data Eng. 2023 35 9 9168-9180
[29]
Jomaa HS, Schmidt-Thieme L, and Grabocka J Dataset2vec: learning dataset meta-features Data Min. Knowl. Discov. 2021 35 964-985
[30]
Karakida, R., Akaho, S., Amari, S.i.: Universal statistics of fisher information in deep neural networks: Mean field approach. In: International Conference on Artificial Intelligence and Statistics, pp. 1032–1041 (2019)
[31]
Ke S, Pan Z, He T, Liang Y, Zhang J, and Zheng Y Autostg+: an automatic framework to discover the optimal network for spatio-temporal graph prediction Artif. Intell. 2023 318
[32]
Kieu, T., Yang, B., Guo, C., Cirstea, R., Zhao, Y., Song, Y., Jensen, C.S.: Anomaly detection in time series with robust variational quasi-recurrent autoencoders. In: ICDE, pp. 1342–1354 (2022)
[33]
Kieu, T., Yang, B., Guo, C., Jensen, C.S., Zhao, Y., Huang, F., Zheng, K.: Robust and explainable autoencoders for unsupervised time series outlier detection. In: ICDE, pp. 3038–3050 (2022)
[34]
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
[35]
Lai, G., Chang, W.C., Yang, Y., Liu, H.: Modeling long-and short-term temporal patterns with deep neural networks. In: SIGIR, pp. 95–104 (2018)
[36]
Le CP, Soltani M, Dong J, and Tarokh V Fisher task distance and its application in neural architecture search IEEE Access 2022 10 47235-47249
[37]
Lee, H., Hyung, E., Hwang, S.J.: Rapid neural architecture search by learning to generate graphs from datasets. arXiv preprint arXiv:2107.00860 (2021)
[38]
Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., Teh, Y.W.: Set transformer: a framework for attention-based permutation-invariant neural networks. In: International Conference on Machine Learning, pp. 3744–3753 (2019)
[39]
Li, T., Zhang, J., Bao, K., Liang, Y., Li, Y., Zheng, Y.: Autost: efficient neural architecture search for spatio-temporal prediction. In: SIGKDD, pp. 794–802 (2020)
[40]
Li, X., Li, Z., Xie, H., Li, Q.: Merging statistical feature via adaptive gate for improved text classification. In: AAAI, vol. 35, pp. 13288–13296 (2021)
[41]
Li, Y., Chen, Z., Zha, D., Zhou, K., Jin, H., Chen, H., Hu, X.: AutoOD: Neural architecture search for outlier detection. In: ICDE, pp. 2117–2122. IEEE (2021)
[42]
Li Y, Shen Y, Zhang W, Jiang J, Li Y, Ding B, Zhou J, Yang Z, Wu W, Zhang C, and Cui B VolcanoML: speeding up end-to-end autoML via scalable search space decomposition Proc. VLDB Endow. 2021 14 11 2167-2176
[43]
Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: ICLR (2018)
[44]
Liu, H., Simonyan, K., Yang, Y.: Darts: differentiable architecture search. In: ICLR (2018)
[45]
Liu, Y., Zhang, H., Li, C., Huang, X., Wang, J., Long, M.: Timer: Transformers for time series analysis at scale. arXiv preprint arXiv:2402.02368 (2024)
[46]
Miao, H., Zhao, Y., Guo, C., Yang, B., Kai, Z., Huang, F., Xie, J., Jensen, C.S.: A unified replay-based continuous learning framework for spatio-temporal prediction on streaming data. In: ICDE (2024)
[47]
Nguyen, C., Hassner, T., Seeger, M., Archambeau, C.: Leep: A new measure to evaluate transferability of learned representations. In: International Conference on Machine Learning, pp. 7294–7305. PMLR (2020)
[48]
Pan, Z., Ke, S., Yang, X., Liang, Y., Yu, Y., Zhang, J., Zheng, Y.: AutoSTG: neural architecture search for predictions of spatio-temporal graphs. In: WWW, pp. 1846–1855 (2021)
[49]
Pedersen SA, Yang B, and Jensen CS Anytime stochastic routing with hybrid learning Proc. VLDB Endow. 2020 13 9 1555-1567
[50]
Pedersen SA, Yang B, and Jensen CS Fast stochastic routing under time-varying uncertainty VLDB J. 2020 29 4 819-839
[51]
Qiu X, Hu J, Zhou L, Wu X, Du J, Zhang B, Guo C, Zhou A, Jensen CS, Sheng Z, and Yang B Tfb: towards comprehensive and fair benchmarking of time series forecasting methods Proc. VLDB Endow. 2024 17 2363-2377
[52]
Rajkumar, R., Lee, I., Sha, L., Stankovic, J.: Cyber-physical systems: the next computing revolution. In: Design Automation Conference, pp. 731–736 (2010)
[53]
Shah, S.Y., Patel, D., Vu, L., Dang, X., Chen, B., Kirchner, P., Samulowitz, H., Wood, D., Bramble, G., Gifford, W.M., Ganapavarapu, G., Vaculín, R., Zerfos, P.: AutoAI-TS: Autoai for time series forecasting. In: SIGMOD, pp. 2584–2596 (2021)
[54]
Shala, G., Elsken, T., Hutter, F., Grabocka, J.: Transfer NAS with meta-learned bayesian surrogates. In: International Conference on Learning Representations (2023)
[55]
Shih SY, Sun FK, and Lee Hy Temporal pattern attention for multivariate time series forecasting Mach. Learn. 2019 108 8 1421-1441
[56]
Song, C., Lin, Y., Guo, S., Wan, H.: Spatial-temporal synchronous graph convolutional networks: a new framework for spatial-temporal network data forecasting. In: AAAI, vol. 34, pp. 914–921 (2020)
[57]
Tran, A.T., Nguyen, C.V., Hassner, T.: Transferability and hardness of supervised classification tasks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1395–1405 (2019)
[58]
Wang J, Wang KC, Rudzicz F, and Brudno M Grad2task: improved few-shot text classification using gradients for task representation Adv. Neural Inf. Process. Syst. 2021 34 6542-6554
[59]
Wang, S., Miao, H., Chen, H., Huang, Z.: Multi-task adversarial spatial-temporal networks for crowd flow prediction. In: International Conference on Information & Knowledge Management, pp. 1555–1564 (2020)
[60]
Wang S, Zhang M, Miao H, Peng Z, and Yu PS Multivariate correlation-aware spatio-temporal graph convolutional networks for multi-scale traffic prediction ACM Trans. Intell. Syst. Technol. (TIST) 2022 13 3 1-22
[61]
Wei, Y., Zhao, P., Huang, J.: Meta-learning hyperparameter performance prediction with neural processes. In: International Conference on Machine Learning, pp. 11058–11067 (2021)
[62]
Wong, C., Houlsby, N., Lu, Y., Gesmundo, A.: Transfer learning with neural AutoML. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
[63]
Woo, G., Liu, C., Kumar, A., Xiong, C., Savarese, S., Sahoo, D.: Unified training of universal time series forecasting transformers. arXiv preprint arXiv:2402.02592 (2024)
[64]
Wu H, Xu J, Wang J, and Long M Autoformer: decomposition transformers with auto-correlation for long-term series forecasting Adv. Neural Inf. Process. Syst. 2021 34 22419-22430
[65]
Wu X, Zhang D, Guo C, He C, Yang B, and Jensen CS AutoCTS: automated correlated time series forecasting Proc. VLDB Endow. 2022 15 4 971-983
[66]
Wu X, Zhang D, Zhang M, Guo C, Yang B, and Jensen CS AutoCTS+: joint neural architecture and hyperparameter search for correlated time series forecasting Proc. ACM Manag. Data 2023 1 1 1-26
[67]
Wu, Z., Pan, S., Long, G., Jiang, J., Chang, X., Zhang, C.: Connecting the dots: Multivariate time series forecasting with graph neural networks. In: SIGKDD, pp. 753–763 (2020)
[68]
Wu, Z., Pan, S., Long, G., Jiang, J., Zhang, C.: Graph wavenet for deep spatial-temporal graph modeling. In: IJCAI, pp. 1907–1913 (2019)
[69]
Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? arXiv preprint arXiv:1810.00826 (2018)
[70]
Yang, S.B., Guo, C., Hu, J., Tang, J., Yang, B.: Unsupervised path representation learning with curriculum negative sampling. In: IJCAI, pp. 3286–3292 (2021)
[71]
Yang, S.B., Guo, C., Hu, J., Yang, B., Tang, J., Jensen, C.S.: Weakly-supervised temporal path representation learning with contrastive curriculum learning. In: ICDE, pp. 2873–2885 (2022)
[72]
Yang SB, Guo C, and Yang B Context-aware path ranking in road networks IEEE Trans. Knowl. Data Eng. 2022 34 7 3153-3168
[73]
Ye, J., Sun, L., Du, B., Fu, Y., Xiong, H.: Coupled layer-wise graph convolution for transportation demand prediction. In: AAAI, vol. 35, pp. 4617–4625 (2021)
[74]
You, K., Liu, Y., Wang, J., Long, M.: Logme: Practical assessment of pre-trained models for transfer learning. In: International Conference on Machine Learning, pp. 12133–12143. PMLR (2021)
[75]
Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: IJCAI, pp. 3634–3640 (2018)
[76]
Yu H, Hu J, Zhou X, Guo C, Yang B, and Li Q CGF: A category guidance based PM2.5 sequence forecasting training framework IEEE Trans. Knowl. Data Eng. 2023 35 10 125-139
[77]
Yue, Z., Wang, Y., Duan, J., Yang, T., Huang, C., Tong, Y., Xu, B.: TS2Vec: towards universal representation of time series. In: AAAI, vol. 36, pp. 8980–8987 (2022)
[78]
Zamir, A.R., Sax, A., Shen, W., Guibas, L.J., Malik, J., Savarese, S.: Taskonomy: Disentangling task transfer learning. In: Conference on Computer Vision and Pattern Recognition, pp. 3712–3722 (2018)
[79]
Zhao, K., Guo, C., Han, P., Zhang, M., Cheng, Y., Yang, B.: Multiple time series forecasting with dynamic graph modeling. In: Proceedings of the VLDB Endowment (2024)
[80]
Zhao L, Song Y, Zhang C, Liu Y, Wang P, Lin T, Deng M, and Li H T-GCN: a temporal graph convolutional network for traffic prediction IEEE Trans. Intell. Transp. Syst. 2019 21 9 3848-3858
[81]
Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., Zhang, W.: Informer: beyond efficient transformer for long sequence time-series forecasting. In: AAAI, vol. 35, pp. 11106–11115 (2021)
[82]
Zhou, T., Ma, Z., Wen, Q., Wang, X., Sun, L., Jin, R.: Fedformer: frequency enhanced decomposed transformer for long-term series forecasting. In: International Conference on Machine Learning, pp. 27268–27286. PMLR (2022)
[83]
Zhou, T., Niu, P., Sun, L., Jin, R., et al.: One fits all: Power general time series analysis by pretrained LM. In: Advances in Neural Information Processing Systems, vol. 36 (2024)
[84]
Zoph, B., Le, Q.V.: Neural architecture search with reinforcement learning. In: ICLR. OpenReview.net (2017)

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 33, Issue 5
Sep 2024
533 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 30 July 2024
Accepted: 16 July 2024
Revision received: 29 May 2024
Received: 26 January 2024

Author Tags

  1. Correlated time series
  2. Task-aware architecture-hyperparameter comparator
  3. Joint search
  4. Zero-shot

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media