[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article
Free access

UV-diagram: a voronoi diagram for uncertain spatial databases

Published: 01 June 2013 Publication History

Abstract

The Voronoi diagram is an important technique for answering nearest-neighbor queries for spatial databases. We study how the Voronoi diagram can be used for uncertain spatial data, which are inherent in scientific and business applications. Specifically, we propose the Uncertain-Voronoi diagram (or UV-diagram ), which divides the data space into disjoint "UV-partitions". Each UV-partition $$P$$ is associated with a set $$S$$ of objects, such that any point $$q$$ located in $$P$$ has the set $$S$$ as its nearest neighbor with nonzero probabilities. The UV-diagram enables queries that return objects with nonzero chances of being the nearest neighbor (NN) of a given point $$q$$ . It supports "continuous nearest-neighbor search", which refreshes the set of NN objects of $$q$$ , as the position of $$q$$ changes. It also allows the analysis of nearest-neighbor information, for example, to find out the number of objects that are the nearest neighbors of any point in a given area. A UV-diagram requires exponential construction and storage costs. To tackle these problems, we devise an alternative representation of a UV-diagram, by using a set of UV-cells . A UV-cell of an object $$o$$ is the extent $$e$$ for which $$o$$ can be the nearest neighbor of any point $$q \in e$$ . We study how to speed up the derivation of UV-cells by considering its nearby objects. We also use the UV-cells to design the UV-index , which supports different queries, and can be constructed in polynomial time. We have performed extensive experiments on both real and synthetic data to validate the efficiency of our approaches.

References

[1]
Aggarwal, C.C.: On unifying privacy and uncertain data models. In: ICDE (2008).
[2]
Agrawal, R., Srikant, R.: Privacy-preserving data mining. In: SIGMOD (2000).
[3]
Akopyan, A., Zaslavski, A.: Geometry of Conics. American Mathematical Society, Providence, RI (2007).
[4]
Albers, G., Mitchell, J.S., Guibas, L.J., Roos, T.: Voronoi diagrams of moving points. Intl. J. Comput. Geom. Appl. 8 (3), 365-380 (1998).
[5]
Aref, W., Ilyas, I.: Sp-gist: an extensible database index for supporting space partitioning trees. JIS. 17 (1), 215-290 (2001).
[6]
Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger, B.: The R*- tree: an efficient and robust accessmethod for points and rectangles. In: SIGMOD (1990).
[7]
Berchtold, S., Ertl, B., Keim, D.A., peter Kriegel, H., Seidl, T.: Fast nearest neighbor search in high-dimensional space. In: ICDE (1998).
[8]
Beskales, G., Soliman, M., Ilyas, I.: Efficient search for the top-k probable nearest neighbors in uncertain databases. In: VLDB (2008).
[9]
Chazelle, B., Edelsbrunner, H.: An improved algorithm for constructing kth-order voronoi diagrams. IEEE Trans. Comput. 36 (11), 1349-1354 (1987).
[10]
Cheema, M.A., Lin, X., Wang, W., Zhang, W., Pei, J.: Probabilistic reverse nearest neighbor queries on uncertain data. TKDE 16 (9), 550-564 (2009).
[11]
Cheema, M.A., Lin, X., Zhang, W., Zhang, Y.: Influence zone: Efficiently processing reverse k nearest neighbors queries. ICDE (2011).
[12]
Chen, J., Cheng, R., Mokbel, M., Chow, C.-Y.: Scalable processing of snapshot and continuous nearest-neighbor queries over one-dimensional uncertain data. VLDB J. 18 (5), 1219-1240 (2009).
[13]
Cheng, R., Chen, J., Mokbel, M., Chow, C.-Y.: Probabilistic verifiers: Evaluating constrained nearest-neighbor queries over uncertain data. In: ICDE (2008).
[14]
Cheng, R., Kalashnikov, D., Prabhakar, S.: Evaluating probabilistic queries over imprecise data. In: SIGMOD (2003).
[15]
Cheng, R., Kalashnikov, D., Prabhakar, S.: Querying imprecise data in moving object environments. TKDE 16 (9), 1112-1127 (2004).
[16]
Cheng, R., Xia, Y., Prabhakar, S., Shah, R., Vitter, J.S.: Efficient indexing methods for probabilistic threshold queries over uncertain data. In: VLDB (2004).
[17]
Cheng, R., Xie, X., Yiu, M.L., Chen, J., Sun, L.: UV-diagram: a voronoi diagram for uncertain data. In: ICDE (2010).
[18]
Dalvi, N., Suciu, D.: Efficient query evaluation on probabilistic databases. In: VLDB (2004).
[19]
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf O.: Computational Geometry: Algorithms and Applications. Springer, New York (1997).
[20]
Hua, M., Pei, J., Zhang, W., Lin, X.: A probabilistic threshold approach. In: SIGMOD, ranking queries on uncertain data (2008).
[21]
Jooyandeh, M., Mohades, A., Mirzakhah, M.: Uncertain voronoi diagram. Inf. Process. Lett. 109 (13), 709-712 (2009).
[22]
Kao, B., Lee, S., Cheung, D., Ho, W., Chan, K.: Clustering uncertain data using voronoi diagrams. In: ICDM (2008).
[23]
Karavelas, M.I.: Voronoi diagrams for moving disks and applications. In: WADS (2001).
[24]
Kriegel, H., Kunath, P., Renz, M.: Probabilistic nearest-neighbor query on uncertain objects. In: DASFAA (2007).
[25]
Lian, X., Chen, L.: Monochromatic and bichromatic reverse skyline search over uncertain databases. In: SIGMOD (2008).
[26]
Lian, X., Chen, L.: Probabilistic group nearest neighbor queries in uncertain databases. TKDE 20 (6), 809-824 (2008).
[27]
Lian, X., Chen, L.: Efficient processing of probabilistic reverse nearest neighbor queries over uncertain data. In: VLDBJ (2009).
[28]
Ljosa, V., Singh, A.: APLA: Indexing arbitrary probability distributions. In: ICDE (2007).
[29]
Ljosa V., Singh, A.: Top-k spatial joins of probabilistic objects. In: ICDE (2008).
[30]
Hadjieleftheriou, M.: Spatial index library version 0.44.2b.
[31]
Mokbel, M., Chow, C., Aref, W.: The new casper: query processing for location services without compromising privacy. In: VLDB (2006).
[32]
Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The V*-diagram: a query-dependent approach to moving knn queries. In: VLDB (2008).
[33]
Okabe, A., Boots, B., Sugihara, K., Chiu, S.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams. Wiley, New York (2000).
[34]
Oppenheim, N.: Urban Travel Demand Modeling: From Individual Choices to General Equilibrium. Wiley, New York (1995).
[35]
Pedersen, J.: On the stability of crystal lattices. ix. Covariant theory of lattice deformations and the stability of some hexagonal lattices. In: Proceedings of the Cambridge Philosophical Society vol. 38 (1942).
[36]
Pei, J., Jiang, B., Lin, X., Yuan, Y.: Probabilistic skylines on uncertain data. In: VLDB (2007).
[37]
Sember, J., Evans, W.: Guaranteed voronoi diagrams of uncertain sites. In: CCCG (2008).
[38]
Sharifzadeh, M., Shahabi, C.: Vor-tree: R-trees with voronoi diagrams for efficient processing of spatial nearest neighbor queries. In: PVLDB (2010).
[39]
Sistla, P.A., Wolfson, O., Chamberlain, S., Dao, S.: Querying the uncertain position of moving objects. In: Temporal Databases Research and Practice (1998).
[40]
Stallings, W.: Wireless Communications and Networks, 2nd edn. Prentice-Hall Inc, Upper Saddle River, NJ (2004).
[41]
Wang, P., Gonzalez, M.C., Hidalgo, C.A., Barabasi, A.-L.: Understanding the spreading patterns of mobile phone viruses. Sci. Exp. 324 (5930), 1071-1076 (2009).
[42]
Wong, R.C.-W., Özsu, M.T., Yu, P.S., Fu, A.W.-C., Liu, L.: Efficient method for maximizing bichromatic reverse nearest neighbor. PVLDB (2009).
[43]
Xu, J., Zheng, B.: Energy efficient index for querying location-dependent data in mobile broadcast environments. In: ICDE (2003).
[44]
Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.: Location-based spatial queries. In: SIGMOD (2003).
[45]
Zheng, B., Xu, J., Lee, W.-C., Lee, L.: Grid-partition index: a hybrid method for nearest-neighbor queries in wireless location-based services. VLDB J. 15 (1), 21-39 (2006).

Cited By

View all
  • (2023)The Convex Uncertain Voronoi Diagram for Safe Multi-Robot Multi-Target Tracking Under Localization UncertaintyJournal of Intelligent and Robotic Systems10.1007/s10846-023-01986-0109:4Online publication date: 22-Nov-2023
  • (2020)Collision-Free Distributed Multi-Target Tracking Using Teams of Mobile Robots with Localization Uncertainty2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS45743.2020.9341126(6968-6974)Online publication date: 24-Oct-2020
  • (2018)Mobility Aware Clustering Scheme with Bayesian-Evidence Trust Management for Public Key Infrastructure in Ad Hoc NetworksWireless Personal Communications: An International Journal10.1007/s11277-017-5107-199:1(371-401)Online publication date: 1-Mar-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The VLDB Journal — The International Journal on Very Large Data Bases
The VLDB Journal — The International Journal on Very Large Data Bases  Volume 22, Issue 3
June 2013
145 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 June 2013

Author Tags

  1. Nearest-neighbor query
  2. Uncertain data
  3. Voronoi diagram

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)16
  • Downloads (Last 6 weeks)3
Reflects downloads up to 13 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2023)The Convex Uncertain Voronoi Diagram for Safe Multi-Robot Multi-Target Tracking Under Localization UncertaintyJournal of Intelligent and Robotic Systems10.1007/s10846-023-01986-0109:4Online publication date: 22-Nov-2023
  • (2020)Collision-Free Distributed Multi-Target Tracking Using Teams of Mobile Robots with Localization Uncertainty2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)10.1109/IROS45743.2020.9341126(6968-6974)Online publication date: 24-Oct-2020
  • (2018)Mobility Aware Clustering Scheme with Bayesian-Evidence Trust Management for Public Key Infrastructure in Ad Hoc NetworksWireless Personal Communications: An International Journal10.1007/s11277-017-5107-199:1(371-401)Online publication date: 1-Mar-2018
  • (2017)Fixing inconsistencies of fuzzy spatiotemporal XML dataApplied Intelligence10.5555/3110563.311058447:1(257-275)Online publication date: 1-Jul-2017
  • (2016)Managing uncertainty of large spatial databasesSIGSPATIAL Special10.1145/3024087.30240898:2(11-17)Online publication date: 9-Dec-2016
  • (2016)Enabling Scalable Geographic Service Sharing with Weighted Imprecise Voronoi CellsIEEE Transactions on Knowledge and Data Engineering10.1109/TKDE.2015.246480428:2(439-453)Online publication date: 1-Feb-2016
  • (2015)The σ-neighborhood skyline queriesInformation Sciences: an International Journal10.1016/j.ins.2015.06.015322:C(92-114)Online publication date: 20-Nov-2015
  • (2014)Hypersphere dominanceProceedings of the 2014 ACM SIGMOD International Conference on Management of Data10.1145/2588555.2593669(111-122)Online publication date: 18-Jun-2014

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media