[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Predictive performance measurement system for retail industry using neuro-fuzzy system based on swarm intelligence

Published: 01 April 2017 Publication History

Abstract

Between 2011 and 2013, convenience store retail business grew dramatically in Thailand. As a result, most companies have increasingly been choosing the application of performance measurement systems. This significantly results in poor performance measurement regarding future business lagging measure. To solve this problem, this research presents a hybrid predictive performance measurement system (PPMS) using the neuro-fuzzy approach based on particle swarm optimization (ANFIS-PSO). It is constructed from many leading aspects of convenience store performance measures and projects the competitive level of future business lagging measure. To do so, monthly store performance measures were first congregated from the case study value chains. Second, data cleaning and preparations by headquarter accounting verification were carried out before the proposed model construction. Third, these results were used as the learning dataset to derive a predictive performance measurement system based on ANFIS-PSO. The fuzzy value of each leading input was optimized by parallel processing PSO, before feeding to the neuro-fuzzy system. Finally, the model provides a future performance for the next month's sales and expense to managers who focused on managing a store using desirability function ($$D_{i})$$Di). It boosted the sales growth in 2012 by ten percentages using single PPMS. Additionally, the composite PPMS was also boosted by the same growth rate for the store in the blind test (July 2013---February 2014). From the experimental results, it can be concluded that ANFIS-PSO delivers high-accuracy modeling, delivering much smaller error and computational time compared to artificial neural network model and supports vector regression but its component searching time differs significantly because of the complexity of each model.

References

[1]
Almejalli K, Dahal K, Hossain MA (2008) Real time identification of road traffic control measures. Advances in computational intelligence in transport, logistics, and supply chain management, vol 144. Springer, Berlin.
[2]
Asiltürk I et al (2012) An intelligent system approach for surface roughness and vibrations prediction in cylindrical grinding. Int J Comput Integr Manuf 25:750-759.
[3]
Bonabeau E, Meyer C (2001) Swarm intelligence. A whole new way to think about business. Harv Bus Rev 79:106-114, 165.
[4]
Castellano G, Castiello C, Fanelli AM, Mencar C (2005) Knowledge discovery by a neuro-fuzzy modeling framework. Fuzzy Sets Syst 149:187-207.
[5]
Cheng JH, Chen SS, Chuang YW (2008) An application of fuzzy delphi and Fuzzy AHP for multi-criteria evaluation model of fourth party logistics. WSEAS Trans Syst 7:466-478.
[6]
Costa HRN, La Neve A (2015) Study on application of a neurofuzzy models in air conditioning systems. Soft Comput 19:929-937.
[7]
Deng W, Chen R, He B, Liu YQ, Yin LF, Guo JH (2012) A novel two-stage hybrid swarm intelligence optimization algorithm and application. Soft Comput 16(10):1707-1722.
[8]
Department of Industrial Promotion (2012). http://www.dip.go.th/.
[9]
Du TCT, Wolfe PM (1997) Implementation of fuzzy logic systems and neural networks in industry. Comput Ind 32:261-272.
[10]
Eberhart R, Kennedy J (1995) New optimizer using particle swarm theory. In: Proceedings of the international symposium on micro machine and human science, pp 39-43.
[11]
Efendigil T, Önüt S, Kahraman C (2009) A decision support system for demand forecasting with artificial neural networks and neurofuzzy models: a comparative analysis. Expert Syst Appl 36:6697-6707.
[12]
Evans JR (2011) Retailing in perspective: the past is a prologue to the future. Int Rev Retail Distrib Consum Res 21:1-31.
[13]
Firat M, Turan ME, Yurdusev MA (2009) Comparative analysis of fuzzy inference systems for water consumption time series prediction. J Hydrol 374:235-241.
[14]
Fishburn PC (1997) Method for estimating addtive utilities. Manag Sci 13-17:435-453.
[15]
Fuzzy Logic Toolbox User's Guide, MATLAB 7.9 (2015).
[16]
Ganga GMD, Carpinetti LCR (2011) A fuzzy logic approach to supply chain performance management. Int J Prod Econ 134:177-187.
[17]
Garcia Infante JC, Medel Juarez JJ, Sanchez Garcia JC (2010) Evolutive neural fuzzy filtering: an approach. WSEAS Trans Syst Control 5:164-173.
[18]
Gnana Sheela K, Deepa SN (2014) Performance analysis of modeling framework for prediction in wind farms employing artificial neural networks. Soft Comput 18:607-615.
[19]
Gumus AT, Guneri AF, Keles S (2009) Supply chain network design using an integrated neuro-fuzzy and MILP approach: a comparative design study. Expert Syst Appl 36:12570-12577.
[20]
Gumus AT, Guneri AF (2009) A multi-echelon inventory management framework for stochastic and fuzzy supply chains. Expert Syst Appl 36:5565-5575.
[21]
Gunasekaran A, Kobu B (2007) Performance measures and metrics in logistics and supply chain management: a review of recent literature (1995-2004) for research and applications. Int J Prod Res 45:2819-2840.
[22]
Gunasekaran A, Ngai EWT (2004) Information systems in supply chain integration and management. Eur J Oper Res 159:269-295.
[23]
Harding JA, Popplewell K (2006) Knowledge reuse and sharing through data mining manufacturing data. In: 2006 IIE annual conference and exhibition.
[24]
He Z, Zhu P, Park S (2012) A robust desirability function method for multi-response surface optimization considering model uncertainty. Eur J Oper Res 221:241-247.
[25]
Holimchayachotikul P et al (2014) Value creation through collaborative supply chain: holistic performance enhancement road map. Prod Plan Control 25:912-922.
[26]
Huang X, Ho D, Ren J, Capretz LF (2006) A soft computing framework for software effort estimation. Soft Comput 10:170-177.
[27]
Jang JSR (1993) ANFIS: adaptive network based fuzzy inference system. IEEE Trans Syst Man Cybern 23(3):665-684.
[28]
Jilani TA, Burney SMA (2007) New method of learning and knowledge management in type-I fuzzy neural networks. Adv Soft Comput 42:730-740.
[29]
Krzysztof S (2014) Neuro-fuzzy system with weighted attributes. Soft Comput 18:285-297.
[30]
Leksakul K et al (2015) Forecast of off-season longan supply using fuzzy support vector regression and fuzzy artificial neural network. Comput Electron Agric 118:259-269.
[31]
Liao SH et al (2014) Training neural networks via simplified hybrid algorithm mixing Nelder-Mead and particle swarm optimization methods. Soft Comput 19:679-689.
[32]
Linh TH, Osowski S, Stodolski M (2003) On-line heart beat recognition using hermite polynomials and neuro-fuzzy network. IEEE Trans Instrum Meas 52:1224-1231.
[33]
Liu ZQ et al (2009) Self-spawning neuro-fuzzy system for rule extraction. Soft Comput 13:1013-1025.
[34]
Lopez-Cruz IL, Hernandez-Larragoiti L (2010) Neuro-fuzzy models for air temperature and humidity of arched and venlo type greenhouses in central Maxico. Modelos neuro-difusos para temperatura y humedad del aire en invernaderos tipo cenital y capilla en el centro de maxico. Agrociencia 44:791-805.
[35]
Marinakis Y, Marinaki M (2013) Particle swarm optimization with expanding neighborhood topology for the permutation flowshop scheduling problem. Soft Comput 17:1159-1173.
[36]
Mariscal G, Marban O, Fernandez C (2010) A survey of data mining and knowledge discovery process models and methodologies. Knowl Eng Rev 25:137-166.
[37]
Marx-Gómez J, Rautenstrauch C, Nurnberger A, Kruse R (2002) Neuro-fuzzy approach to forecast returns of scrapped products to recycling and remanufacturing. Knowl Based Syst 15:119-128.
[38]
Mehrabad MS et al (2011) Targeting performance measures based on performance prediction. Int J Product Perform Manag 61:46-68.
[39]
Mohandes M et al (2011) Estimation of wind speed profile using adaptive neuro-fuzzy inference system (ANFIS). Appl Energy 88:4024-4032.
[40]
Paladini EP (2009) A fuzzy approach to compare human performance in industrial plants and service-providing companies. WSEAS Trans Bus Econ 6:557-569.
[41]
Pessin G et al (2013) Swarm intelligence and the quest to solve a garbage and recycling collection problem. Soft Comput 17:2311-2325.
[42]
Shen KY, Tzeng GH (2015) A decision rule-based soft computing model for supporting financial performance improvement of the banking industry. Soft Comput 19:859-874.
[43]
Sheu JB (2008) A hybrid neuro-fuzzy analytical approach to mode choice of global logistics management. Eur J Oper Res 189:971-986.
[44]
Sun C et al (2014) A two-layer surrogate-assisted particle swarm optimization algorithm. Soft Comput 19:1461-1475.
[45]
Svalina I et al (2013) An adaptive network-based fuzzy inference system (ANFIS) for the forecasting: the case of close price indices. Expert Syst Appl 40:6055-6063.
[46]
Tirian GO, Pinca CB, Cristea D, Topor M (2010) Applications of fuzzy logic in continuous casting. WSEAS Trans Syst Control 5:133-142.
[47]
Unahabhokha C et al (2007) Predictive performance measurement system: a fuzzy expert system approach. Benchmarking 14:77-91.
[48]
Vukadinovic K, Teodorovic D, Pavkovic G (1999) An application of neurofuzzy modeling: the vehicle assignment problem. Eur J Oper Res 114:474-488.
[49]
Wang Y, Cai ZX (2012) A dynamic hybrid framework for constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part B Cybern 42(1):203-217.
[50]
Wong BK, Lai VS (2010) A survey of the application of fuzzy set theory in production and operations management: 1998-2009. Int J Prod Econ 129:157-168.
[51]
Yao X, Xu G, Cui Y, Fan S, Wei J (2009) Application of the swarm intelligence in the organization of agricultural products logistics. In: Proceedings of 2009 4th international conference on computer science and education, ICCSE 2009, pp 77-80.
[52]
Zheng YJ, Ling HF (2013) Emergency transportation planning in disaster relief supply chain management: a cooperative fuzzy optimization approach. Soft Comput 17:1301-1314.

Cited By

View all
  • (2023)Data Preprocessing in Supply Chain Management Analytics - A Review of Methods, the Operations They Fulfill, and the Tasks They Accomplish.Proceedings of the 2023 6th International Conference on Computers in Management and Business10.1145/3584816.3584830(93-99)Online publication date: 13-Jan-2023
  • (2020)Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-019-04103-224:5(3393-3411)Online publication date: 1-Mar-2020
  • (2018)A Novel Fuzzy Algorithm to Introduce New Variables in the Drug Supply Decision-Making Process in MedicineComplexity10.1155/2018/90127202018Online publication date: 18-Feb-2018

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Soft Computing - A Fusion of Foundations, Methodologies and Applications
Soft Computing - A Fusion of Foundations, Methodologies and Applications  Volume 21, Issue 7
April 2017
261 pages
ISSN:1432-7643
EISSN:1433-7479
Issue’s Table of Contents

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 April 2017

Author Tags

  1. Neuro-fuzzy
  2. Predictive performance measurement system
  3. Retailing value chain
  4. Swarm intelligence

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Data Preprocessing in Supply Chain Management Analytics - A Review of Methods, the Operations They Fulfill, and the Tasks They Accomplish.Proceedings of the 2023 6th International Conference on Computers in Management and Business10.1145/3584816.3584830(93-99)Online publication date: 13-Jan-2023
  • (2020)Shear strength prediction of reinforced concrete beams by baseline, ensemble, and hybrid machine learning modelsSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-019-04103-224:5(3393-3411)Online publication date: 1-Mar-2020
  • (2018)A Novel Fuzzy Algorithm to Introduce New Variables in the Drug Supply Decision-Making Process in MedicineComplexity10.1155/2018/90127202018Online publication date: 18-Feb-2018

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media