[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Quickest Visibility Queries in Polygonal Domains

Published: 01 September 2019 Publication History

Abstract

Let s be a point in a polygonal domain $${\mathcal {P}}$$ of $$h-1$$ holes and n vertices. We consider a quickest visibility query problem. Given a query point q in $${\mathcal {P}}$$, the goal is to find a shortest path in $${\mathcal {P}}$$ to move from s to see q as quickly as possible. Previously, Arkin et al. (SoCG 2015) built a data structure of size $$O(n^22^{\alpha (n)}\log n)$$ that can answer each query in $$O(K\log ^2 n)$$ time, where $$\alpha (n)$$ is the inverse Ackermann function and K is the size of the visibility polygon of q in $${\mathcal {P}}$$ (and K can be $$\varTheta (n)$$ in the worst case). In this paper, we present a new data structure of size $$O(n\log h + h^2)$$ that can answer each query in $$O(h\log h\log n)$$ time. Our result improves the previous work when h is relatively small. In particular, if h is a constant, then our result even matches the best result for the simple polygon case (i.e., $$h=1$$), which is optimal. As a by-product, we also have a new algorithm for a shortest-path-to-segment query problem. Given a query line segment $$\tau $$ in $${\mathcal {P}}$$, the query seeks a shortest path from s to all points of $$\tau $$. Previously, Arkin et al. gave a data structure of size $$O(n^22^{\alpha (n)}\log n)$$ that can answer each query in $$O(\log ^2 n)$$ time, and another data structure of size $$O(n^3\log n)$$ with $$O(\log n)$$ query time. We present a data structure of size O(n) with query time $$O\big (h\log \frac{n}{h}\big )$$, which also favors small values of h and is optimal when $$h=O(1)$$.

References

[1]
Arkin, E., Efrat, A., Knauer, C., Mitchell, J.S.B., Polishchuk, V., Rote, G., Schlipf, L., Talvitie, T.: Shortest path to a segment and quickest visibility queries. J. Comput. Geom. 7(2), 77–100 (2016)
[2]
Bar-Yehuda, R., Chazelle, B.: Triangulating disjoint Jordan chains. Int. J. Comput. Geom. Appl. 4(4), 475–481 (1994)
[3]
Bender, M., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H., Viola, A. (eds.) Proceedings of the 4th Latin American Symposium on Theoretical Informatics. Lecture Notes in Computer Science, vol. 1776, pp. 88–94. Springer, Berlin (2000)
[4]
Bose, P., Lubiw, A., Munro, J.I.: Efficient visibility queries in simple polygons. Comput. Geom. 23(3), 313–335 (2002)
[5]
Chazelle, B., Edelsbrunner, H., Grigni, M., Guibas, L., Hershberger, J., Sharir, M., Snoeyink, J.: Ray shooting in polygons using geodesic triangulations. Algorithmica 12(1), 54–68 (1994)
[6]
Chen, D.Z., Wang, H.: A nearly optimal algorithm for finding $$L_1$$ shortest paths among polygonal obstacles in the plane. In: Proceedings of the 19th European Symposium on Algorithms (ESA). Lecture Notes in Computer Science, vol. 6942, pp. 481–492. Springer, Heidelberg (2011)
[7]
Chen, D.Z., Wang, H.: $$L_1$$ shortest path queries among polygonal obstacles in the plane. In: Portier, N., Wilke, T. (eds.) Proceedings of 30th Symposium on Theoretical Aspects of Computer Science (STACS). pp. 293–304. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2013)
[8]
Chen, D.Z., Wang, H.: Weak visibility queries of line segments in simple polygons. Comput. Geom. 48(6), 443–452 (2015)
[9]
Chen, D.Z., Wang, H.: Visibility and ray shooting queries in polygonal domains. Comput. Geom. 48(2), 31–41 (2015)
[10]
Chen, D.Z., Wang, H.: Computing the visibility polygon of an island in a polygonal domain. Algorithmica 77(1), 40–64 (2017)
[11]
Cheung, Y.K., Daescu, O.: Approximate point-to-face shortest paths in $${\cal{R}}^3$$ (2010). arXiv:1004.1588
[12]
Chiang, Y.-J., Tamassia, R.: Optimal shortest path and minimum-link path queries between two convex polygons inside a simple polygonal obstacle. Int. J. Comput. Geom. Appl. 7(1–2), 85–121 (1997)
[13]
de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry—Algorithms and Applications, 3rd edn. Springer, Berlin (2008)
[14]
Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM J. Comput. 15(2), 317–340 (1986)
[15]
Eriksson-Bique, S., Hershberger, J., Polishchuk, V., Speckmann, B., Suri, S., Talvitie, T., Verbeek, K., Yıldız, H.: Geometric $$k$$ shortest paths. In: Proceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 1616–1625. SIAM, Philadelphia (2015)
[16]
Guibas, L., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2(1–4), 209–233 (1987)
[17]
Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13(2), 338–355 (1984)
[18]
Hershberger, J., Suri, S.: A pedestrian approach to ray shooting: shoot a ray, take a walk. J. Algorithms 18(3), 403–431 (1995)
[19]
Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)
[20]
Hershberger, J., Polishchuk, V., Speckmann, B., Talvitie, T.: Geometric $$k$$th shortest paths: the applet. In: Video/Multimedia of the 30th Annual Symposium on Computational Geometry (2014). http://www.computational-geometry.org/SoCG-videos/socg14video/ksp/index.html
[21]
Kapoor, S., Maheshwari, S., Mitchell, J.S.B.: An efficient algorithm for Euclidean shortest paths among polygonal obstacles in the plane. Discrete Comput. Geom. 18(4), 377–383 (1997)
[22]
Khosravi, R., Ghodsi, M.: The fastest way to view a query point in simple polygons. In: Proceedings of the 24th European Workshop on Computational Geometry, pp. 187–190 (2005)
[23]
Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)
[24]
Melissaratos, E., Souvaine, D.L.: Shortest paths help solve geometric optimization problems in planar regions. SIAM J. Comput. 21(4), 601–638 (1992)
[25]
Mitchell, J.S.B.: A new algorithm for shortest paths among obstacles in the plane. Ann. Math. Artif. Intell. 3(1), 83–105 (1991)
[26]
Mitchell, J.S.B.: Shortest paths among obstacles in the plane. Int. J. Comput. Geom. Appl. 6(3), 309–332 (1996)
[27]
Pocchiola, M., Vegter, G.: Topologically sweeping visibility complexes via pseudotriangulations. Discrete Comput. Geom. 16(4), 419–453 (1996)
[28]
Pocchiola, M., Vegter, G.: The visibility complex. Int. J. Comput. Geom. Appl. 6(3), 279–308 (1996)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Discrete & Computational Geometry
Discrete & Computational Geometry  Volume 62, Issue 2
Sep 2019
256 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2019

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 12 Jan 2025

Other Metrics

Citations

Cited By

View all

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media