[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Dual-mechanism surface tension model for SPH-based simulation

Published: 27 May 2024 Publication History

Abstract

We present an innovative Lagrangian dual-mechanism model for simulating versatile surface tension phenomena, designed to replicate the intricate interplay of liquids with textured solid surfaces and the emergence of gas bubbles. This model synergistically merges the influence of inter-particle dynamics with global surface curvature, ensuring a harmonious balance between the intricacies of fluid motion and the imperative of surface area reduction. A cornerstone of our methodology is the incorporation of Laplace pressure differentials across fluid boundaries, enhancing interface stability and enabling the depiction of distinctive droplet oscillations driven by fluctuations in kinetic energy. Additionally, our model introduces a dual-scale smoothing kernel, meticulously engineered to resolve the subtle nuances of surface textures. The prowess of our model is exemplified in its ability to simulate superhydrophobic behaviors, underscoring its utility. Integrated within the smoothed particle hydrodynamics framework, our model offers efficient simulation performance, contributing a valuable tool to the field of fluid simulation.

References

[1]
Akinci N, Akinci G, and Teschner M Versatile surface tension and adhesion for SPH fluids ACM Trans. Graph. TOG 2013 32 6 1-8
[2]
Batty C, Uribe A, Audoly B, and Grinspun E Discrete viscous sheets ACM Trans. Graph. TOG 2012 31 4 1-7
[3]
Becker, M., Teschner, M.: Weakly compressible SPH for free surface flows. In: ACM Siggraph/Eurographics Symposium on Computer Animation (2007)
[4]
Bergou M, Audoly B, Vouga E, Wardetzky M, and Grinspun E Discrete viscous threads ACM Trans. Graph. TOG 2010 29 4 1-10
[5]
Brackbill JU, Kothe DB, and Zemach C A continuum method for modeling surface tension J. Comput. Phys. 1992 100 2 335-354
[6]
Cassie A and Baxter S Wettability of porous surfaces Trans. Faraday Soc. 1944 40 546-551
[7]
Chen J, Kala V, Marquez-Razon A, Gueidon E, Hyde DA, and Teran J A momentum-conserving implicit material point method for surface tension with contact angles and spatial gradients ACM Trans. Graph. TOG 2021 40 4 1-16
[8]
Chen YL, Meier J, Solenthaler B, and Azevedo VC An extended cut-cell method for sub-grid liquids tracking with surface tension ACM Trans. Graph. TOG 2020 39 6 1-13
[9]
Clavet, S., Beaudoin, P., Poulin, P.: Particle-based viscoelastic fluid simulation. In: Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 219–228 (2005)
[10]
Da F, Batty C, Wojtan C, and Grinspun E Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams ACM Trans. Graph. TOG 2015 34 4 1-9
[11]
Da F, Hahn D, Batty C, Wojtan C, and Grinspun E Surface-only liquids ACM Trans. Graph. TOG 2016 35 4 1-12
[12]
He X, Wang H, Zhang F, Wang H, Wang G, and Zhou K Robust simulation of sparsely sampled thin features in SPH-based free surface flows ACM Trans. Graph. TOG 2014 34 1 1-9
[13]
Hu Y, Li TM, Anderson L, Ragan-Kelley J, and Durand F Taichi: a language for high-performance computation on spatially sparse data structures ACM Trans. Graph. TOG 2019 38 6 201
[14]
Huber, M., Reinhardt, S., Weiskopf, D., Eberhardt, B.: Evaluation of surface tension models for SPH-based fluid animations using a benchmark test. In: VRIPHYS, pp. 41–50 (2015)
[15]
Hyde DA, Gagniere SW, Marquez-Razon A, and Teran J An implicit updated Lagrangian formulation for liquids with large surface energy ACM Trans. Graph. TOG 2020 39 6 1-13
[16]
Ihmsen M, Cornelis J, Solenthaler B, Horvath C, and Teschner M Implicit incompressible SPH IEEE Trans. Vis. Comput. Graph. 2014 20 3 426-435
[17]
Ishida S, Synak P, Narita F, Hachisuka T, and Wojtan C A model for soap film dynamics with evolving thickness ACM Trans. Graph. TOG 2020 39 4 31-1
[18]
Jeske SR, Westhofen L, Löschner F, Fernández-fernández JA, and Bender J Implicit surface tension for SPH fluid simulation ACM Trans. Graph. 2023 43 1 1-14
[19]
Lundgren T and Mansour N Oscillations of drops in zero gravity with weak viscous effects J. Fluid Mech. 1988 194 479-510
[20]
Monaghan JJ Simulating free surface flows with SPH J. Comput. Phys. 1994 110 2 399-406
[21]
Monaghan JJ Smoothed particle hydrodynamics Rep. Prog. Phys. 2005 68 8 1703
[22]
Morris JP Simulating surface tension with smoothed particle hydrodynamics Int. J. Numer. Methods Fluids 2000 33 3 333-353
[23]
Müller, M., Charypar, D., Gross, M.: Particle-based fluid simulation for interactive applications. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 154–159 (2003)
[24]
Oger G, Doring M, Alessandrini B, and Ferrant P An improved SPH method: towards higher order convergence J. Comput. Phys. 2007 225 2 1472-1492
[25]
Plateau JAF Statique expérimentale et théorique des liquides soumis aux seules forces moléculaires 1873 Paris Gauthier-Villars
[26]
Ruan L, Liu J, Zhu B, Sueda S, Wang B, and Chen B Solid–fluid interaction with surface-tension-dominant contact ACM Trans. Graph. TOG 2021 40 4 1-12
[27]
Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 1968 23rd ACM National Conference, pp. 517–524 (1968)
[28]
Si W, Liao X, Qian Y, Wang Q, and Heng PA Versatile numerical fractures removal for SPH-based free surface liquids Comput. Graph. 2019 81 1-8
[29]
Solenthaler, B., Pajarola, R.: Density contrast SPH interfaces. In: ACM Siggraph/Eurographics Symposium on Computer Animation (2008)
[30]
Wang H, Jin Y, Luo A, Yang X, and Zhu B Codimensional surface tension flow using moving-least-squares particles ACM Trans. Graph. TOG 2020 39 4 1-42
[31]
Wang M, Deng Y, Kong X, Prasad AH, Xiong S, and Zhu B Thin-film smoothed particle hydrodynamics fluid ACM Trans. Graph. TOG 2021 40 4 1-16
[32]
Wang XK, Ban XJ, Zhang YL, Liu SN, and Ye PF Surface tension model based on implicit incompressible smoothed particle hydrodynamics for fluid simulation J. Comput. Sci. Technol. 2017 32 1186-1197
[33]
Wendland H Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree Adv. Comput. Math. 1995 4 389-396
[34]
Wenzel RN Resistance of solid surfaces to wetting by water Ind. Eng. Chem. 1936 28 8 988-994
[35]
Wang X, Xu Y, Liu S, Ren B, Kosinka J, Telea AC, Wang J, Song C, Chang J, Li C, Zhang JJ, and Ban X Physics-based fluid simulation in computer graphics: survey, research trends, and challenges Comput. Vis. Media CVM 2024
[36]
Xing J, Ruan L, Wang B, Zhu B, and Chen B Position-based surface tension flow ACM Trans. Graph. TOG 2022 41 6 1-12
[37]
Yang, T., Lin, M., Martin, R.R., Chang, J., Hu, S.: Versatile interactions at interfaces for SPH-based simulations. In: Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2016), pp. 57–66. Association for Computing Machinery (2016)
[38]
Yang T, Martin RR, Lin MC, Chang J, and Hu SM Pairwise force SPH model for real-time multi-interaction applications IEEE Trans. Vis. Comput. Graph. 2017 23 10 2235-2247
[39]
Zhang M Simulation of surface tension in 2D and 3D with smoothed particle hydrodynamics method J. Comput. Phys. 2010 229 19 7238-7259
[40]
Zhang Y, Wang H, Wang S, Tong Y, and Zhou K A deformable surface model for real-time water drop animation IEEE Trans. Vis. Comput. Graph. 2011 18 8 1281-1289
[41]
Zhu B, Quigley E, Cong M, Solomon J, and Fedkiw R Codimensional surface tension flow on simplicial complexes ACM Trans. Graph. TOG 2014 33 4 1-11
[42]
Zorilla F, Ritter M, Sappl J, Rauch W, and Harders M Accelerating surface tension calculation in SPH via particle classification and Monte Carlo integration Computers 2020 9 2 23

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The Visual Computer: International Journal of Computer Graphics
The Visual Computer: International Journal of Computer Graphics  Volume 40, Issue 7
Jul 2024
502 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 27 May 2024
Accepted: 09 May 2024

Author Tags

  1. Surface tension
  2. Laplace pressure
  3. Rough surface
  4. Interface stability

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media