[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Illustrative multilevel focus+context visualization along snaking paths

Published: 01 October 2017 Publication History

Abstract

Artistic anatomical illustrations often focus on cross sections of long, layered, cylindrical structures. Such illustrations emphasize structures along transitions between focal points over a snaking path that optimally traverses the span of a limited space. The transitions between focal points form a multilevel visualization hierarchy. In this article, we present an approach to automatically create focus+context visualizations of the described form. First, a method to automatically create a snaking path through space by applying a pathfinding algorithm is presented. A 3D curve is created based on a 2D snaking path. Then we describe a process to deform cylindrical structures in segmented volumetric models along the 3D curve and provide preliminary geometric models as templates for artists to build upon. Our constrained volume sculpting method enables the removal of occluding material to reveal cylindrical structures of interest intended for such deformation. Finally, we present a set of created visualizations that demonstrates the flexibility of our approach and effectively mimics the form of visualization observed in motivating illustrations.

References

[1]
Pietriga, E., Appert, C.: Sigma lenses: Focus-context transitions combining space, time and translucence. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI, pp. 1343---1352. ACM, New York, USA (2008).
[2]
Pindat, C., Pietriga, E., Chapuis, O., Puech, C.: JellyLens: content-aware adaptive lenses. In: Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, UIST, pp. 261---270. ACM, New York, USA (2012).
[3]
Hasan, M., Samavati, F.F., Jacob, C.: Multilevel focus+context visualization using balanced multiresolution. In: International Conference on Cyberworlds (CW) 2014, pp. 145---152. IEEE (2014).
[4]
Hasan, M., Samavati, F.F., Jacob, C.: Interactive multilevel focus+context visualization framework. Vis. Comput. 1---12 (2015).
[5]
Taerum, T., Sousa, M.C., Samavati, F., Chan, S., Mitchell, J.R.: Real-time super resolution contextual close-up of clinical volumetric data. In: Proceedings of the Eighth Joint Eurographics/IEEE VGTC Conference on Visualization, EUROVIS, pp. 347---354. Eurographics Association, Aire-la-Ville, Switzerland (2006).
[6]
Chen, H.L.J., Samavati, F.F., Sousa, M.C.: GPU-based point radiation for interactive volume sculpting and segmentation. Vis. Comput. 24, 689---698 (2008).
[7]
Cohen, M.: Focus and context for volume visualization. Ph.D. thesis (2006)
[8]
Cohen, M., Brodlie, K.: Focus and context for volume visualization. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 32---39. IEEE (2004).
[9]
Carpendale, M.S.T., Montagnese, C.: A framework for unifying presentation space. In: Proceedings of the 14th Annual ACM Symposium on User Interface Software and Technology, UIST, pp. 61---70. ACM, New York, USA (2001).
[10]
Wang, L., Zhao, Y., Mueller, K., Kaufman, A.: The magic volume lens: An interactive focus+context technique for volume rendering. In: Proceedings of the Conference on Visualization, VIS, pp. 367---374. IEEE Computer Society (2005).
[11]
Ropinski, T., Viola, I., Biermann, M., Hauser, H., Hinrichs, K.: Multimodal visualization with interactive closeups. In: Proceeding of the Theory and Practice of Computer Graphics Conference, pp. 17---24. Eurographics Association (2009)
[12]
Hsu, W.H., Ma, K.L., Correa, C.: A rendering framework for multiscale views of 3D models. ACM Trans. Graph. 30(6), 131:1---131:10 (2011).
[13]
Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving volume rendering. In: Proceedings of the 7th Joint Eurographics/IEEE VGTC Conference on Visualization, EUROVIS, pp. 69---76. Eurographics Association, Aire-la-Ville, Switzerland (2005).
[14]
Hauser, H., Mroz, L., Italo Bischi, G., Gröller, M.: Two-level volume rendering. IEEE Trans. Vis. Comput. Graph. 7(3), 242---252 (2001).
[15]
Csébfalvi, B., Mroz, L., Hauser, H., König, A., Gröller, E.: Fast visualization of object contours by non-photorealistic volume rendering. Comput. Graph. Forum 20(3), 452---460 (2001).
[16]
Ebert, D., Rheingans, P.: Volume illustration: Non-photorealistic rendering of volume models. In: Proceedings of the Conference on Visualization, VIS, pp. 195---202. IEEE Computer Society Press, Los Alamitos, CA, USA (2000).
[17]
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100---107 (1968).
[18]
Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math. 1, 269---271 (1959).
[19]
Aggarwal, A., Coppersmith, D., Khanna, S., Motwani, R., Schieber, B.: The angular-metric traveling salesman problem. SIAM J. Comput. 29(3), 697---711 (2000).
[20]
Sederberg, T.W., Parry, S.R.: Free-form deformation of solid geometric models. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 151---160. ACM, New York, USA (1986).
[21]
Chen, H., Hesser, J., Männer, R.: Ray casting free-form deformed-volume objects. J. Vis. Comp. Animat. 14(2), 61---72 (2003).
[22]
Rezk-Salama, C., Scheuering, M., Soza, G., Greiner, G.: Fast volumetric deformation on general purpose hardware. In: Proceedings of the ACM SIGGRAPH/Eurographics Workshop on Graphics Hardware, HWWS, pp. 17---24. ACM, New York, USA (2001).
[23]
Westermann, R., Rezk-Salama, C.: Real-time volume deformations. Comput. Graph Forum 20(3), 443---451 (2001).
[24]
McGuffin, M.J., Tancau, L., Balakrishnan, R.: Using deformations for browsing volumetric data. In: Proceedings of the Conference on Visualization, VIS, pp. 401---408. IEEE Computer Society, Washington, DC, USA (2003).
[25]
Correa, C., Silver, D., Chen, M.: Feature aligned volume manipulation for illustration and visualization. IEEE Trans. Vis. Comput. Graph. 12(5), 1069---1076 (2006).
[26]
Correa, C.D., Silver, D., Chen, M.: Discontinuous displacement mapping for volume graphics. In: Proceedings of the Eurographics/IEEE VGTC Workshop on Volume Graphics, pp. 9---16. Eurographics Association, Boston, Massachusetts, USA (2006).
[27]
Gagvani, N., Kenchammana-Hosekote, D., Silver, D.: Volume animation using the skeleton tree. In: Proceedings of the IEEE Symposium on Volume Visualization, VVS, pp. 47---53. ACM, New York, USA (1998).
[28]
Lee, T., Kashyap, R., Chu, C.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP Graph. Model. IM 56(6), 462---478 (1994).
[29]
Chuang, J.H., Tsai, C.H., Ko, M.C.: Skeletonisation of three-dimensional object using generalized potential field. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1241---1251 (2000).
[30]
Cornea, N.D., Silver, D., Yuan, X., Balasubramanian, R.: Computing hierarchical curve-skeletons of 3D objects. Vis. Comput. 21, 945---955 (2005).
[31]
Grigorishin, T., Abdel-Hamid, G., Yang, Y.: Skeletonisation: an electrostatic field-based approach. Pattern Anal. Appl. 1, 163---177 (1998).
[32]
Galyean, T.A., Hughes, J.F.: Sculpting: An interactive volumetric modeling technique. In: Proceedings of the 18th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH, pp. 267---274. ACM, New York, USA (1991).
[33]
Wang, S.W., Kaufman, A.E.: Volume sculpting. In: Proceedings of the 1995 Symposium on Interactive 3D Graphics, I3D, pp. 151---156, 214. ACM, New York, USA (1995).
[34]
Ferley, E., Cani, M.P., Gascuel, J.D.: Practical volumetric sculpting. Vis. Comput. 16, 469---480 (2000).
[35]
Imanishi, K., Nakao, M., Kioka, M., Mori, M., Yoshida, M., Takahashi, T., Minato, K.: Interactive bone drilling using a 2D pointing device to support microendoscopic discectomy planning. Int. J. Comput. Assist. Radiol. Surg. 5, 461---469 (2010)
[36]
Cannon, J.W., Thurston, W.P.: Group invariant Peano curves. Geom. Topol. 11(3), 1315---1355 (2007).
[37]
Van Emmerik, M.J.: A direct manipulation technique for specifying 3D object transformations with a 2D input device. Comput. Graph. Forum 9(4), 355---361 (1990).
[38]
Roberts, M., Packer, J., Sousa, M.C., Mitchell, J.R.: A work-efficient GPU algorithm for level set segmentation. Proceedings of the Conference on High Performance Graphics. HPG, pp. 123---132. Eurographics Association, Aire-la-Ville, Switzerland (2010)
[39]
Cornea, N., Silver, D., Min, P.: Curve-skeleton applications. In: Proceedings of the Conference on Visualization, VIS, pp. 95---102. IEEE Computer Society (2005).
[40]
Samavati, F.F., Bartels, R.H., Olsen, L.: Local B-spline multiresolution with examples in iris synthesis and volumetric rendering. In: Yanushkevich, S.N., Gavrilova, M.L., Wan, P.S.P., Srihari, S.N. (eds.), Image Pattern Recognition: Synthesis and Analysis in Biometrics, Series in Machine Perception and Artificial Intelligence, vol. 67, pp. 65---102. World Scientific Publishing (2007)
[41]
Hanson, A.J., Ma, H.: Parallel transport approach to curve framing. Tech. rep., Indiana University (1995)
[42]
Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, ACM, pp. 517---524. ACM, New York, USA (1968).
[43]
Kitware: Visualization toolkit (VTK) version 5.10.1. (2012). http://www.vtk.org
[44]
Winter, A.S., Chen, M.: Image-swept volumes. Comput. Graph Forum 21(3), 441---450 (2002).
[45]
Stichting Blender Foundation.: Blender (2012). http://www.blender.org
[46]
Tiede, U., Schiemann, T., Höhne, K.H.: High quality rendering of attributed volume data. In: Proceedings of the Conference on Visualization. VIS, pp. 255---262. IEEE Computer Society, Los Alamitos, CA, USA (1998)
[47]
Hasan, M., Samavati, F.F., Sousa, M.C.: Balanced multiresolution for symmetric/antisymmetric filters. Graph. Models 78, 36---59 (2015).
[48]
Renka, R.J.: Multivariate interpolation of large sets of scattered data. ACM Trans. Math. Softw. 14(2), 139---148 (1988).

Cited By

View all
  • (2023)Multi-scale physicalization of polar heritage at risk in the western canadian arcticThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-022-02439-939:5(1717-1729)Online publication date: 1-May-2023
  • (2019)PolarViz: a discriminating visualization and visual analytics tool for high-dimensional dataThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1558-y35:11(1567-1582)Online publication date: 1-Nov-2019

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image The Visual Computer: International Journal of Computer Graphics
The Visual Computer: International Journal of Computer Graphics  Volume 33, Issue 10
October 2017
141 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 October 2017

Author Tags

  1. 65D18
  2. 68U05
  3. 76M27
  4. Constrained volume sculpting
  5. Focus+context visualization
  6. Illustrative visualization
  7. Multilevel visualization hierarchy
  8. Pathfinding
  9. Volume deformation

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 09 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2023)Multi-scale physicalization of polar heritage at risk in the western canadian arcticThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-022-02439-939:5(1717-1729)Online publication date: 1-May-2023
  • (2019)PolarViz: a discriminating visualization and visual analytics tool for high-dimensional dataThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-018-1558-y35:11(1567-1582)Online publication date: 1-Nov-2019

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media