[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

VizAssist: an interactive user assistant for visual data mining

Published: 01 November 2016 Publication History

Abstract

We study in this work how a user can be guided to find a relevant visualization in the context of visual data mining. We present a state of the art on the user assistance in visual and interactive methods. We propose a user assistant called VizAssist, which aims at improving the existing approaches along three directions: it uses simpler computational models of the visualizations and the visual perception guidelines, in order to facilitate the integration of new visualizations and the definition of a mapping heuristic. VizAssist allows the user to provide feedback in a visual and interactive way, with the aim of improving the data to visualization mapping. This step is performed with an interactive genetic algorithm. Finally, VizAssist aims at proposing a free on-line tool (www.vizassist.fr) that respects the privacy of the user data. This assistant can be viewed as a global interface between the user and some of the many visualizations that are implemented with D3js.

References

[1]
Albuquerque, G., Eisemann, M., Magnor, M.: Perception-based visual quality measures. In: 2011 IEEE conference on visual analytics science and technology (VAST), pp. 13---20 (2011)
[2]
Azzag, H., Picarougne, F., Guinot, C., Venturini, G.: Vrminer: a tool for multimedia database mining with virtual reality. In: Processing and Managing Complex Data for Decision Support, pp. 318---339. (2005)
[3]
Bertini, E., Tatu, A., Keim, D.: Quality metrics in high-dimensional data visualization: an overview and systematization. IEEE Trans. Vis. Comput. Graph. 17(12), 2203---2212 (2011)
[4]
Blake, C.L., Merz, C.J.: UCI repository of machine learning databases. UCI repository of machine learning databases (1998). http://archive.ics.uci.edu/ml/. http://www.ics.uci.edu/mlearn/MLRepository.html
[5]
Bostock, M., Ogievetsky, V., Heer, J.: D3 data-driven documents. IEEE Trans. Vis. Comput. Graph. 17(12), 2301---2309 (2011)
[6]
Boudjeloud, L., Poulet, F.: Visual interactive evolutionary algorithm for high dimensional data clustering and outlier detection. In: Ho, T.B., Cheung, D.W.L., Liu, H. (eds.) PAKDD, Lecture Notes in Computer Science, vol. 3518, pp. 426---431. Springer, Berlin (2005)
[7]
Cancino, W., Boukhelifa, N., Lutton, E.: Evographdice: Interactive evolution for visual analytics. In: IEEE proceedings of the 2012 IEEE congress on evolutionary computation, pp. 2286---2293 (2012)
[8]
Casner, S.M.: Task-analytic approach to the automated design of graphic presentations. ACM Trans. Graph. (TOG) 10(2), 111---151 (1991)
[9]
Cleveland, W.S., McGill, R.: Graphical perception: theory, experimentation, and application to the development of graphical methods. J. Am. Stat. Assoc. 79, 531---554 (1984)
[10]
Dang, T.N., Wilkinson, L.: Scagexplorer: exploring scatterplots by their scagnostics. In: Pacific visualization symposium (PacificVis), 2014 IEEE, pp. 73---80 (2014)
[11]
Dasgupta, A., Kosara, R.: Pargnostics: screen-space metrics for parallel coordinates. IEEE Trans. Vis. Comput. Graph. 16(6), 1017---1026 (2010)
[12]
Dawkins, R.: The Blind Watchmaker. Norton, San Mateo (1986)
[13]
Demiralp, C., Scheidegger, C.E., Kindlmann, G.L., Laidlaw, D.H., Heer, J.: Visual embedding: a model for visualization. IEEE Comput. Graph. Appl. 34(1), 10---15 (2014)
[14]
Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge discovery in databases. AI Magz. 17(3), 37 (1996)
[15]
Gnanamgari, S.: Information presentation through default displays. Ph.D. thesis, Philadelphia, PA, USA (1981)
[16]
Goldberg, D.E.: Real-coded genetic algorithms, virtual alphabets, and blocking. Complex Syst. 5(5), 139---167 (1991)
[17]
Gotz, D., Wen, Z.: Behavior-driven visualization recommendation. In: Proceedings of the 14th international conference on intelligent user interfaces. IUI '09, pp. 315---324. ACM, New York, NY, USA (2009)
[18]
Grammel, L., Tory, M., Storey, M.: How information visualization novices construct visualizations. IEEE Trans. Vis. Comput. Graph. 16(6), 943---952 (2010)
[19]
Guettala, A.E.T., Bouali, F., Guinot, C., Venturini, G.: A user assistant for the selection and parameterization of the visualizations in visual data mining. 16th international conference on information visualisation, pp. 252---257 (2012)
[20]
Hand, D.J., Mannila, H., Smyth, P.: Principles of Data Mining. MIT press, Cambridge (2001)
[21]
Hanrahan, P., Stolte, C., Mackinlay, J.: Visual analysis for everyone: understanding data exploration and visualization. In: Tableau Software Inc., p. 27 (2007)
[22]
Healey, C., Kocherlakota, S., Rao, V., Mehta, R., St Amant, R.: Visual perception and mixed-initiative interaction for assisted visualization design. IEEE Trans. Vis. Comput. Graph. 14(2), 396---411 (2008)
[23]
Healey, C.G., Amant, R.S., Elhaddad, M.S.: Via: A perceptual visualization assistant. In: In 28th workshop on advanced imagery pattern recognition (AIPR-99), pp. 2---11 (1999)
[24]
Heer, J., van Ham, F., Carpendale, S., Weaver, C., Isenberg, P.: Creation and collaboration: engaging new audiences for information visualization. In: Kerren, A., Stasko, J.T., Fekete, J.-D. North, C. (eds.) Information Visualization vol. 4950, pp. 92---133. Springer Berlin, Heidelberg (2008)
[25]
Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press, Cambridge (1975)
[26]
Inselberg, A.: The plane with parallel coordinates. Vis. Comput. 1, 69---91 (1985)
[27]
Key, A., Howe, B., Perry, D., Aragon, C.: Vizdeck: self-organizing dashboards for visual analytics. In: Proceedings of the 2012 ACM SIGMOD International conference on management of data. SIGMOD '12, pp. 681---684. ACM, New York, NY, USA (2012)
[28]
Kim, H.S., Cho, S.B.: Application of interactive genetic algorithm to fashion design. Eng. Appl. Artif. Intell. 13(6), 635---644 (2000)
[29]
Lange, S., Schumann, H., Mller, W., Krmker, D.: Problem-oriented visualisation of multi-dimensional data sets. pp. 1---15. Singapore : World Scientific, c1995. (1995)
[30]
Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110---141 (1986)
[31]
Mackinlay, J.D., Hanrahan, P., Stolte, C.: Show me: automatic presentation for visual analysis. IEEE Trans. Vis. Comput. Graph. 13(6), 1137---1144 (2007)
[32]
Maguire, E., Rocca-Serra, P., Sansone, S.A., Davies, J., Chen, M.: Taxonomy-based glyph design--with a case study on visualizing workflows of biological experiments. IEEE Trans. Vis. Comput. Graph. 18(12), 2603---2612 (2012)
[33]
Pineo, D., Ware, C.: Data visualization optimization via computational modeling of perception. IEEE Trans. Vis. Comput. Graph. 18(2), 309---320 (2012)
[34]
Roth, S.F., Kolojejchick, J., Mattis, J., Goldstein, J.: Interactive graphic design using automatic presentation knowledge. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp. 112---117. ACM (1994)
[35]
Schneidewind, J., Sips, M., Keim, D.A.: Pixnostics: Towards measuring the value of visualization. In: Visual Analytics Science And Technology, 2006 IEEE Symposium On, pp. 199---206. IEEE (2006)
[36]
Schulz, H.J., Nocke, T., Heitzler, M., Schumann, H.: A design space of visualization tasks. IEEE Trans. Vis. Comput. Graph. 19(12), 2366---2375 (2013)
[37]
Senay, H., Ignatius, E.: Vista: a knowledge based system for scientific data visualization. Tech. rep. (1992)
[38]
Senay, H., Ignatius, E.: A knowledge-based system for visualization design. IEEE Comput. Graph. Appl. 14(6), 36---47 (1994)
[39]
Shneiderman, B.: The eyes have it: a task by data type taxonomy for information visualizations. In: Proceedings of the 1996 IEEE symposium on visual languages, VL '96, pp. 336---343. IEEE Computer Society (1996)
[40]
Siegel, S., Castellan, N.: Non-parametric Statistics for the Behavioural Sciences. Mc Graw-Hill book company, New York (1988)
[41]
Smith, J.R.: Designing biomorphs with an interactive genetic algorithm. In: Proceedings of the fourth international conference on genetic algorithms, pp. 535---538 (1991)
[42]
Syswerda, G.: Uniform crossover in genetic algorithms. In: Proceedings of the 3rd international conference on genetic algorithms, pp. 2---9. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (1989). http://dl.acm.org/citation.cfm?id=645512.657265
[43]
Tokui, N., Iba, H.: Music composition with interactive evolutionary computation. Communication 17(2), 215---226 (2000)
[44]
Venturini, G., Slimane, M., Morin, F., Asselin de Beauville, J.P.: On using interactive genetic algorithms for knowledge discovery in databases. In: Back, T. (ed.) Genetic Algorithms: Proceedings of the Seventh International Conference, pp. 696---703. Morgan Kaufmann, Michigan State University, East Lansing, MI, USA (1987)
[45]
Verbeke, G., Molenberghs, G.: Linear Mixed Models in Practice: A SAS-Oriented Approach. Springer, New York (1997)
[46]
Voigt, M., Pietschmann, S., Grammel, L., Meißner, K.: Context-aware recommendation of visualization components. In: eKNOW 2012, the fourth international conference on information, process, and knowledge management, pp. 101---109 (2012)
[47]
van Wijk, J.J.: Model-based visualization-computing perceptually optimal visualizations. In: Mathematical foundations of scientific visualization, computer graphics, and massive data exploration, pp. 343---350. Springer, Berlin (2009)
[48]
Wright, A.: Genetic algorithms for real parameter optimization. Found. Genet. Algorithms 1, 205---218 (1991)
[49]
Yi, J.S., Ah Kang, Y., Stasko, J.T., Jacko, J.A.: oward a deeper understanding of the role of interaction in information visualization. IEEE Trans. Vis. Comput. Graph. 13(6), 1224---1231 (2007)

Cited By

View all
  • (2024)DaedalusData: Exploration, Knowledge Externalization and Labeling of Particles in Medical Manufacturing — A Design StudyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632931:1(54-64)Online publication date: 23-Sep-2024
  • (2024)A Heuristic Approach for Dual Expert/End-User Evaluation of Guidance in Visual AnalyticsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332715230:1(997-1007)Online publication date: 1-Jan-2024
  • (2023)Catalogue Visu: a Tool for Fast Visualization PrototypingProceedings of the 34th Conference on l'Interaction Humain-Machine10.1145/3583961.3583969(1-10)Online publication date: 3-Apr-2023
  • Show More Cited By
  1. VizAssist: an interactive user assistant for visual data mining

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image The Visual Computer: International Journal of Computer Graphics
      The Visual Computer: International Journal of Computer Graphics  Volume 32, Issue 11
      November 2016
      138 pages

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 November 2016

      Author Tags

      1. D3js
      2. Interactive genetic algorithm
      3. On-line visualization tools
      4. User assistant
      5. Visual data mining

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 29 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)DaedalusData: Exploration, Knowledge Externalization and Labeling of Particles in Medical Manufacturing — A Design StudyIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2024.345632931:1(54-64)Online publication date: 23-Sep-2024
      • (2024)A Heuristic Approach for Dual Expert/End-User Evaluation of Guidance in Visual AnalyticsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.332715230:1(997-1007)Online publication date: 1-Jan-2024
      • (2023)Catalogue Visu: a Tool for Fast Visualization PrototypingProceedings of the 34th Conference on l'Interaction Humain-Machine10.1145/3583961.3583969(1-10)Online publication date: 3-Apr-2023
      • (2023)Explanations for Itemset Mining by Constraint Programming: A Case Study Using ChEMBL DataAdvances in Intelligent Data Analysis XXI10.1007/978-3-031-30047-9_17(208-221)Online publication date: 12-Apr-2023
      • (2022)Investigating whether people identify how suitable a data visualization is for answering specific analysis questionsProceedings of the 21st Brazilian Symposium on Human Factors in Computing Systems10.1145/3554364.3560904(1-11)Online publication date: 17-Oct-2022
      • (2022)MultiVision: Designing Analytical Dashboards with Deep Learning Based RecommendationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311482628:1(162-172)Online publication date: 1-Jan-2022
      • (2022)Towards Visual Explainable Active Learning for Zero-Shot ClassificationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.311479328:1(791-801)Online publication date: 1-Jan-2022
      • (2021)Snowy: Recommending Utterances for Conversational Visual AnalysisThe 34th Annual ACM Symposium on User Interface Software and Technology10.1145/3472749.3474792(864-880)Online publication date: 10-Oct-2021
      • (2021)A proposed UML-based common model for information visualization systemsMultimedia Tools and Applications10.1007/s11042-020-10306-980:8(12541-12579)Online publication date: 1-Mar-2021
      • (2021)VizGRank: A Context-Aware Visualization Recommendation Method Based on Inherent Relations Between VisualizationsDatabase Systems for Advanced Applications10.1007/978-3-030-73200-4_16(244-261)Online publication date: 11-Apr-2021
      • Show More Cited By

      View Options

      View options

      Figures

      Tables

      Media

      Share

      Share

      Share this Publication link

      Share on social media