[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Deterministic root finding over finite fields using Graeffe transforms

Published: 01 June 2016 Publication History

Abstract

We design new deterministic algorithms, based on Graeffe transforms, to compute all the roots of a polynomial which splits over a finite field $$\mathbb {F}_q$$Fq. Our algorithms were designed to be particularly efficient in the case when the cardinality $$q - 1$$q-1 of the multiplicative group of $$\mathbb {F}_q$$Fq is smooth. Such fields are often used in practice because they support fast discrete Fourier transforms. We also present a new nearly optimal algorithm for computing characteristic polynomials of multiplication endomorphisms in finite field extensions. This algorithm allows for the efficient computation of Graeffe transforms of arbitrary orders.

References

[1]
Allem, L.E., Gao, S., Trevisan, V.: Extracting sparse factors from multivariate integral polynomials. J. Symb. Comput. 52, 3---16 (2013)
[2]
Arora, M., Ivanyos, G., Karpinski, M., Saxena, N.: Deterministic polynomial factoring and association schemes. LMS J. Comput. Math. 17(1), 123---140 (2014)
[3]
Bach, E.: Comments on search procedures for primitive roots. Math. Comput. 66, 1719---1727 (1997)
[4]
Berlekamp, E.R.: Factoring polynomials over finite fields. Bell Syst. Tech. J. 46, 1853---1859 (1967)
[5]
Berlekamp, E.R.: Factoring polynomials over large finite fields. Math. Comput. 24, 713---735 (1970)
[6]
Bostan, A., Gonzales-Vega, L., Perdry, H., Schost, É.: Complexity issues on Newton sums of polynomials (2005). Distributed in the digital proceedings of MEGA'05
[7]
Bostan, A., Flajolet, P., Salvy, B., Schost, É.: Fast computation of special resultants. J. Symb. Comput. 41(1), 1---29 (2006)
[8]
Bostan, A., Gaudry, P., Schost, É.: Linear recurrences with polynomial coefficients and application to integer factorization and Cartier-Manin operator. SIAM J. Comput. 36(6), 1777---1806 (2007)
[9]
Bostan, A., Schost, É.: Polynomial evaluation and interpolation on special sets of points. J. Complex. 21(4), 420---446 (2005)
[10]
Camion, P.: A deterministic algorithm for factorizing polynomials of $${ F}_q{X}$$Fq{X}. In: Combinatorial mathematics (Marseille-Luminy, 1981), North-Holland Math. Stud., vol. 75, pp. 149---157. North-Holland, Amsterdam (1983)
[11]
Cantor, D.G., Kaltofen, E.: On fast multiplication of polynomials over arbitrary algebras. Acta Inform. 28(7), 693---701 (1991)
[12]
Cantor, D.G., Zassenhaus, H.: A new algorithm for factoring polynomials over finite fields. Math. Comput. 36(154), 587---592 (1981)
[13]
Caruso, X., Roe, D., Vaccon, T.: Tracking $$p$$p-adic precision. LMS J. Comput. Math. 17, 274---294 (2014). Special Issue A, Algorithmic Number Theory Symposium XI
[14]
Costa, E., Harvey, D.: Faster deterministic integer factorization. Math. Comput. 83(285), 339---345 (2014)
[15]
Evdokimov, S.: Factorization of polynomials over finite fields in subexponential time under GRH. In: Algorithmic Number Theory (Ithaca, NY, 1994), Lecture Notes in Comput. Sci., vol. 877, pp. 209---219. Springer, Berlin (1994)
[16]
Gao, S.: On the deterministic complexity of factoring polynomials. J. Symb. Comput. 31(1---2), 19---36 (2001)
[17]
Giusti, M., Lecerf, G., Salvy, B.: A Gröbner free alternative for polynomial system solving. J. Complex. 17(1), 154---211 (2001)
[18]
Grenet, B., van der Hoeven, J., Lecerf, G.: Randomized root finding over finite FFT-fields using tangent Graeffe transforms. In: Robertz, D. (ed.) ISSAC '15: Proceedings of the 2015 International Symposium on Symbolic and Algebraic Computation, pp. 197---204. ACM Press (2015)
[19]
Harvey, D., van der Hoeven, J., Lecerf, G.: Even faster integer multiplication (2014). arXiv:1407.3360
[20]
Harvey, D., van der Hoeven, J., Lecerf, G.: Faster polynomial multiplication over finite fields (2014). arXiv:1407.3361
[21]
Huang, M.D.A.: Generalized Riemann hypothesis and factoring polynomials over finite fields. J. Algorithms 12(3), 464---481 (1991)
[22]
Kaltofen, E.: Polynomial factorization: a success story. In: Hong, H. (ed.) ISSAC '03: Proceedings of the 2003 International Symposium on Symbolic and Algebraic Computation, pp. 3---4. ACM Press (2003)
[23]
Kedlaya, K.S., Umans, C.: Fast modular composition in any characteristic. In: Broder, A.Z., et al. (eds.) 49th Annual IEEE Symposium on Foundations of Computer Science 2008 (FOCS '08), pp. 146---155. IEEE (2008)
[24]
Kedlaya, K.S., Umans, C.: Fast polynomial factorization and modular composition. SIAM J. Comput. 40(6), 1767---1802 (2011)
[25]
Kronecker, L.: Grundzüge einer arithmetischen theorie der algebraischen Grössen. J. Reine Angew. Math. 92, 1---122 (1882)
[26]
Lecerf, G.: Fast separable factorization and applications. Appl. Algebra Eng. Commun. Comput. 19(2), 135---160 (2008)
[27]
Malajovich, G., Zubelli, J.P.: Tangent graeffe iteration. Numer. Math. 89(4), 749---782 (2001)
[28]
Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Subgroup refinement algorithms for root finding in $$\text{ GF }(q)$$GF(q). SIAM J. Comput. 21(2), 228---239 (1992)
[29]
Mignotte, M., Schnorr, C.: Calcul déterministe des racines d'un polynôme dans un corps fini. C. R. Acad. Sci. Paris Sér. I Math 306(12), 467---472 (1988)
[30]
Moenck, R.T.: On the efficiency of algorithms for polynomial factoring. Math. Comput. 31, 235---250 (1977)
[31]
Mullen, G.L., Panario, D.: Handbook of Finite Fields. Discrete Mathematics and Its Applications. Chapman and Hall/CRC (2013)
[32]
Pan, V.: Solving a polynomial equation: some history and recent progress. SIAM Rev. 39(2), 187---220 (1997)
[33]
Pan, V.: New techniques for the computation of linear recurrence coefficients. Finite Fields Appl. 6, 93---118 (2000)
[34]
Pohlig, S.C., Hellman, M.E.: An improved algorithm for computing logarithms over GF$$(p)$$(p) and its cryptographic significance (corresp.). IEEE Trans. Inf. Theory 24(1), 106---110 (1978)
[35]
Rabin, M.O.: Probabilistic algorithms in finite fields. SIAM J. Comput. 9(2), 273---280 (1980)
[36]
Rónyai, L.: Factoring polynomials modulo special primes. Combinatorica 9(2), 199---206 (1989)
[37]
Rónyai, L.: Galois groups and factoring polynomials over finite fields. SIAM J. Discrete Math. 5(3), 345---365 (1992)
[38]
Saha, C.: Factoring polynomials over finite fields using balance test. In: Albers, S., Weil, P. (eds.) 25th International Symposium on Theoretical Aspects of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs), vol. 1, pp. 609---620. Schloss Dagstuhl---Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany (2008). http://drops.dagstuhl.de/opus/volltexte/2008/1323
[39]
Schoof, R.: Elliptic curves over finite fields and the computation of square roots mod $$p$$p. Math. Comput. 44(170), 483---494 (1985)
[40]
Shoup, V.: A fast deterministic algorithm for factoring polynomials over finite fields of small characteristic. In: Watt, S.M. (ed.) ISSAC '91: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation, pp. 14---21. ACM Press (1991)
[41]
Shoup, V.: NTL: A Library for doing Number Theory (2014) Software, version 8.0.0. http://www.shoup.net/ntl
[42]
Shoup, V.: On the deterministic complexity of factoring polynomials over finite fields. Inf. Process. Lett. 33(5), 261---267 (1990)
[43]
Shoup, V.: Smoothness and factoring polynomials over finite fields. Inf. Process. Lett. 38(1), 39---42 (1991)
[44]
Shoup, V.: Searching for primitive roots in finite fields. Math. Comput. 58, 369---380 (1992)
[45]
Vaccon, T.: $$p$$p-adic precision. Ph.D. thesis, Université Rennes 1 (2015) https://tel.archives-ouvertes.fr/tel-01205269
[46]
van der Hoeven, J., Lecerf, G.: Sparse polynomial interpolation in practice. ACM Commun. Comput. Algebra 48(4) (2014). In section "ISSAC 2014 Software Presentations"
[47]
von zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press, Cambridge (2003)
[48]
von zur Gathen, J., Panario, D.: Factoring polynomials over finite fields: a survey. J. Symb. Comput. 31(1---2), 3---17 (2001)
[49]
von zur Gathen, J.: Factoring polynomials and primitive elements for special primes. Theor. Comput. Sci. 52(1---2), 77---89 (1987)
[50]
¿rałek, B.: Using partial smoothness of $$p-1$$p-1 for factoring polynomials modulo $$p$$p. Math. Comput. 79, 2353---2359 (2010)

Cited By

View all
  1. Deterministic root finding over finite fields using Graeffe transforms

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Applicable Algebra in Engineering, Communication and Computing
      Applicable Algebra in Engineering, Communication and Computing  Volume 27, Issue 3
      June 2016
      86 pages
      ISSN:0938-1279
      EISSN:1432-0622
      Issue’s Table of Contents

      Publisher

      Springer-Verlag

      Berlin, Heidelberg

      Publication History

      Published: 01 June 2016

      Author Tags

      1. 12Y05
      2. 13P05
      3. 68W30
      4. Deterministic algorithm
      5. Finite field
      6. Graeffe transform
      7. Polynomial root finding

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 18 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2023)Root-Squaring for Root-FindingComputer Algebra in Scientific Computing10.1007/978-3-031-41724-5_6(107-127)Online publication date: 28-Aug-2023
      • (2022)Efficient computation of Riemann–Roch spaces for plane curves with ordinary singularitiesApplicable Algebra in Engineering, Communication and Computing10.1007/s00200-022-00588-x35:6(739-804)Online publication date: 1-Dec-2022
      • (2021)Computing one billion roots using the tangent Graeffe methodACM Communications in Computer Algebra10.1145/3457341.345734254:3(65-85)Online publication date: 15-Mar-2021
      • (2021)On the Complexity Exponent of Polynomial System SolvingFoundations of Computational Mathematics10.1007/s10208-020-09453-021:1(1-57)Online publication date: 1-Feb-2021
      • (2020)Sub-quadratic time for riemann-roch spacesProceedings of the 45th International Symposium on Symbolic and Algebraic Computation10.1145/3373207.3404053(14-21)Online publication date: 20-Jul-2020
      • (2020)Implementing the Tangent Graeffe Root Finding MethodMathematical Software – ICMS 202010.1007/978-3-030-52200-1_48(482-492)Online publication date: 13-Jul-2020
      • (2017)Composition Modulo Powers of PolynomialsProceedings of the 2017 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3087604.3087634(445-452)Online publication date: 23-Jul-2017
      • (2016)On p-Adic Differential Equations with Separation of VariablesProceedings of the 2016 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2930889.2930912(319-323)Online publication date: 20-Jul-2016

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media