[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Detecting personality and emotion traits in crowds from video sequences

Published: 01 July 2019 Publication History

Abstract

This paper presents a methodology to detect personality and basic emotion characteristics of crowds in video sequences. Firstly, individuals are detected and tracked, and then groups are recognized and characterized. Such information is then mapped to OCEAN dimensions, used to find out personality and emotion in videos, based on OCC emotion models. Although it is a clear challenge to validate our results with real life experiments, we evaluate our method with the available literature information regarding OCEAN values of different Countries and also emergent Personal distance among people. Hence, such analysis refer to cultural differences of each country too. Our results indicate that this model generates coherent information when compared to data provided in available literature, as shown in qualitative and quantitative results.

References

[1]
Baig, M.W., Baig, M.S., Bastani, V., Barakova, E.I., Marcenaro, L., Regazzoni, C.S., Rauterberg, M.: Perception of emotions from crowd dynamics. In: 2015 IEEE International Conference on Digital Signal Processing (DSP), pp. 703---707. IEEE (2015)
[2]
Barry, B., Stewart, G.L.: Composition, process, and performance in self-managed groups: the role of personality. J. Appl. Psychol. 82, 62 (1997)
[3]
Bins, J., Dihl, L.L., Jung, C.R.: Target tracking using multiple patches and weighted vector median filters. MIV 45(3), 293---307 (2013).
[4]
Bon, G.: The Crowd: A Study of the Popular Mind. Cosimo Classics Personal Development. Cosimo Classics, New York (2006)
[5]
Cai, Z., Yu, Z.L., Liu, H., Zhang, K.: Counting people in crowded scenes by video analyzing. In: 9th IEEE ICIEA, pp. 1841---1845 (2014).
[6]
Cattell, R.B.: The primary personality factors in women compared with those in men. Br. J. Stat. Psychol. 1(2), 114---130 (1948).
[7]
Cattell, R.B.: Personality: A Systematic, Theoretical, and Factual Study, 1st edn. McGraw-Hill, New York (1950)
[8]
Chan, A.B., Vasconcelos, N.: Bayesian poisson regression for crowd counting. In: 12th IEEE ICCV, pp. 545---551 (2009)
[9]
Chandran, A., Poh, L.A., Vadakkepat, P.: Identifying social groups in pedestrian crowd videos. In: ICAPR, pp. 1---6 (2015).
[10]
Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. ACS 12(03), 393---405 (2009).
[11]
Chattaraj, U., Seyfried, A., Chakroborty, P.: Comparison of pedestrian fundamental diagram across cultures. ACS (2009).
[12]
Clore, G.L., Ortony, A.: Psychological construction in the OCC model of emotion. Emot. Rev. 5(4), 335---343 (2013)
[13]
Costa, Jr. P.T., McCrae, R.R.: Revised NEO Personality Inventory (NEO-PI-R) and the NEO Five-Factor Inventory (NEO-FFI) Professional Manual. Psychological Assessment Resources, Odessa (1992)
[14]
Costa, Jr. P.T., McCrae, R.R.: NEO PI-R: inventrio de personalidade NEO revisado. Sao Paulo (2007)
[15]
Davis, K.L., Panksepp, J.: The brain's emotional foundations of human personality and the affective neuroscience personality scales. Neurosci. Biobehav. Rev. 35(9), 1946---1958 (2011)
[16]
Davis, K.L., Panksepp, J., Normansell, L.: The affective neuroscience personality scales: normative data and implications. Neuropsychoanalysis 5(1), 57---69 (2003)
[17]
Digman, J.M.: Personality structure: emergence of the five-factor model. Annu. Rev. Psychol. 41(1), 417---440 (1990).
[18]
Durupinar, F., Allbeck, J., Pelechano, N., Badler, N.: Creating crowd variation with the ocean personality model. In: Proceedings of the 7th International Joint Conference on Autonomous Agents and Multiagent Systems--vol. 3, pp. 1217---1220. IFAAMAS, Richland (2008). http://dl.acm.org/citation.cfm?id=1402821.1402835
[19]
Ekman, P., Friesen, W.V.: Constants across cultures in the face and emotion. J. Pers. Soc. Psychol. 17(2), 124 (1971)
[20]
Favaretto, R.M., Dihl, L., Musse, S.R.: Detecting crowd features in video sequences. In: Proceedings of Conference on Graphics, Patterns and Images (SIBGRAPI). IEEE Computer Society Conference Publishing Services (2016).
[21]
Favaretto, R.M., Dihl, L., Musse, S.R., Vilanova, F., Costa, A.B.: Using big five personality model to detect cultural aspects in crowds. In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 223---229 (2017).
[22]
Feng, L., Bhanu, B.: Understanding dynamic social grouping behaviors of pedestrians. IEEE STSP 9(2), 317---329 (2015)
[23]
Fiske, D.W.: Consistency of The Factorial Structures in Personality Ratings from Different Sources. University of MICHIGAN (1948). https://books.google.com.br/books?id=o74lnQEACAAJ
[24]
Gorbova, J., Lsi, I., Litvin, A., Anbarjafari, G.: Automated screening of job candidate based on multimodal video processing. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1679---1685 (2017).
[25]
Guy, S.J., Kim, S., Lin, M.C., Manocha, D.: Simulating heterogeneous crowd behaviors using personality trait theory. In: Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA '11, pp. 43---52. ACM, New York (2011).
[26]
Hall, E.: The Hidden Dimension. A Doubleday Anchor Book. Anchor Books (1990). http://books.google.com.br/books?id=zGYPwLj2dCoC
[27]
Hall, C.S., Lindzey, G., Campbell, J.B.: Theories of Personality, 4th edn. Wiley, New Jersey (1998)
[28]
Jo, H., Chug, K., Sethi, R.J.: A review of physics-based methods for group and crowd analysis in computer vision. J. Postdr. Res. 1(1), 4---7 (2013)
[29]
Kaup, D., Clarke, T., Malone, L., Oleson, R.: Society for computer simulation. Simul. Ser. 38(4), 365---370 (2006)
[30]
Lord, W.: Neo Pi-R A Guide to Interpretation and Feedback in a Work Context, 1st edn. Hogrefe Ltd, Oxford (2007)
[31]
McCrae, R., Terracciano, A.: Universal features of personality traits from the observer's perspective : data from 50 cultures. J. Pers. Soc. Psychol. 88(3), 547---561 (2005)
[32]
McCrae, R.R.: NEO-PI-R Data from 36 Cultures, pp. 105---125. Springer US, Boston (2002).
[33]
Montag, C., Panksepp, J.: Primary emotional systems and personality: an evolutionary perspective. Front. Psychol. 8, 464 (2017)
[34]
Ortony, A., Clore, G.L., Collins, A.: The Cognitive Structure of Emotions. Cambridge University Press, Cambridge (1990)
[35]
Rabiee, H., Haddadnia, J., Mousavi, H., Nabi, M., Murino, V., Sebe, N.: Emotion-based crowd representation for abnormality detection. arXiv preprint arXiv:1607.07646 (2016)
[36]
Revelle, W., Scherer, K.R.: Personality and emotion. In: Sander D, Scherer K (eds) Oxford Companion to Emotion and the Affective Sciences. Oxford University Press, New York, pp. 304---306 (2009)
[37]
Saifi, L., Boubetra, A., Nouioua, F.: An approach for emotions and behavior modeling in a crowd in the presence of rare events. Adapt. Behav. 24(6), 428---445 (2016)
[38]
Sethi, R.J.: Towards defining groups and crowds in video using the atomic group actions dataset. In: 2015 IEEE International Conference on Image Processing, ICIP 2015, Quebec City, QC, Canada, September 27-30, 2015, pp. 2925---2929 (2015).
[39]
Shao, J., Loy, C.C., Wang, X.: Scene-independent group profiling in crowd. In: IEEE CVPR, pp. 2227---2234 (2014).
[40]
Solera, F., Calderara, S., Cucchiara, R.: Structured learning for detection of social groups in crowd. In: 10th IEEE AVSS (2013)
[41]
Solmaz, B., Moore, B.E., Shah, M.: Identifying behaviors in crowd scenes using stability analysis for dynamical systems. IEEE PAMI 34(10), 2064---2070 (2012).
[42]
Sorokowska, A., Sorokowski, P.: P.H.: preferred interpersonal distances: a global comparison. J. Cross Cult. Psychol. 48(4), 577---592 (2017).
[43]
Vilanova, F., Beria, F., et al.: A.C.: deindividuation: from le bon to the social identity model of deindividuation effects. CP 4(1) (2017).
[44]
Zhang, Y., Qin, L., Ji, R., Zhao, S., Huang, Q., Luo, J.: Exploring coherent motion patterns via structured trajectory learning for crowd mood modeling. IEEE Trans. Circuits Syst. Video Technol. 27(3), 635---648 (2017)
[45]
Zhou, B., Tang, X., Zhang, H., Wang, X.: Measuring crowd collectiveness. IEEE PAMI 36(8), 1586---1599 (2014).

Cited By

View all
  • (2024)VyaktitvaNirdharan: Multimodal Assessment of Personality and Trait Emotional IntelligenceIEEE Transactions on Affective Computing10.1109/TAFFC.2024.340424315:4(2139-2153)Online publication date: 22-May-2024
  • (2023)Co-Located Human–Human Interaction Analysis Using Nonverbal Cues: A SurveyACM Computing Surveys10.1145/362651656:5(1-41)Online publication date: 25-Nov-2023
  • (2023)Representing dynamic textures based on polarized gradient featuresMachine Vision and Applications10.1007/s00138-023-01438-734:5Online publication date: 28-Aug-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Machine Vision and Applications
Machine Vision and Applications  Volume 30, Issue 5
July 2019
201 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 July 2019

Author Tags

  1. Big Five model
  2. Computer vision
  3. Crowd emotion
  4. Crowd features
  5. Cultural dimensions

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)VyaktitvaNirdharan: Multimodal Assessment of Personality and Trait Emotional IntelligenceIEEE Transactions on Affective Computing10.1109/TAFFC.2024.340424315:4(2139-2153)Online publication date: 22-May-2024
  • (2023)Co-Located Human–Human Interaction Analysis Using Nonverbal Cues: A SurveyACM Computing Surveys10.1145/362651656:5(1-41)Online publication date: 25-Nov-2023
  • (2023)Representing dynamic textures based on polarized gradient featuresMachine Vision and Applications10.1007/s00138-023-01438-734:5Online publication date: 28-Aug-2023
  • (2021)A new context-based feature for classification of emotions in photographsMultimedia Tools and Applications10.1007/s11042-020-10404-880:10(15589-15618)Online publication date: 1-Apr-2021
  • (2021)Cultural behaviors analysis in video sequencesMachine Vision and Applications10.1007/s00138-021-01225-232:4Online publication date: 1-Jul-2021
  • (2021)How Much Do We Perceive Geometric Features, Personalities and Emotions in Avatars?Advances in Computer Graphics10.1007/978-3-030-89029-2_42(548-567)Online publication date: 6-Sep-2021

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media