[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Applications of automatic differentiation in topology optimization

Published: 01 November 2017 Publication History

Abstract

The goal of this article is to demonstrate the applicability and to discuss the advantages and disadvantages of automatic differentiation in topology optimization. The technique makes it possible to wholly or partially automate the evaluation of derivatives for optimization problems and is demonstrated on two separate, previously published types of problems in topology optimization. Two separate software packages for automatic differentiation, CoDiPack and Tapenade are considered, and their performance and usability trade-offs are discussed and compared to a hand coded adjoint gradient evaluation process. Finally, the resulting optimization framework is verified by applying it to a non-trivial unsteady flow topology optimization problem.

References

[1]
Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565- 572.
[2]
Albring T, Sagebaum M, Gauger N (2015a) Development of a consistent discrete adjoint solver in an evolving aerodynamic design framework. AIAA 2015-3240.
[3]
Albring T, Zhou B, Gauger N, Sagebaum M (2015b) An aerodynamic design framework based on algorithmic differentiation. ERCOFTAC Bulletin 102:10-16.
[4]
Albring T, Sagebaum M, Gauger NR (2016) Efficient aerodynamic design using the discrete adjoint method in su2. In: 17th AIAA/ISSMO multidisciplinary analysis and optimization conference.
[5]
Asinari P (2006) Semi-implicit-linearized multiple-relaxation-time formulation of lattice Boltzmann schemes for mixture modeling. Phys Rev E 73(5):056,705.
[6]
AutoDiff website (2016) Autodiff.org: Community portal for automatic differentiation. http://www.autodiff.org, accessed: 2016-10-18.
[7]
Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016a) PETSC users manual. Tech. Rep. ANL-95/11 - revision 3.7, argonne national laboratory, http://www.mcs.anl.gov/petsc.
[8]
Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016b) PETSC Web page. http://www.mcs.anl.gov/petsc.
[9]
Bartoloni A, Battista C, Cabasino S, Paolucci P, Pech J, Sarno S, Todesco G, Torelli M, Tross W, Vicini P, Benzi R, Cabibbo N, Massaioli F, Tripiccione R (1993) LBE Simulations of Rayleigh-Benard convection on the APE100 parallel processor. Int J ModPhys C Phys Comput 4(5):993-1006.
[10]
Bendsøe MP, Sigmund O (2004) Topology optimization: theory, methods and applications. Springer.
[11]
Bhatnagar PL, Gross EP, Krook M (1954) A model for collision processes in gases. I: Small amplitude processes in charged and neutral one-component systems. Phys Rev 94(3).
[12]
Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41(1):77-107.
[13]
CoDiPack website (2016) Codipack--code differentiation package. http://www.scicomp.uni-kl.de/software/codi/, accessed: 2016-10-18.
[14]
Dahl J, Jensen JS, Sigmund O (2008) Topology optimization for transient wave propagation problems in one dimension. Struct Multidiscip Optim 36:585-595.
[15]
D'Humieres D (1994) Generalized lattice Boltzmann equations. Prog Astronaut Aeronaut 159:450-458.
[16]
Elesin Y, Lazarov B, Jensen J, Sigmund O (2012) Design of robust and efficient photonic switches using topology optimization. Photonics Nanostruct Fundam Appl 10(1):153-165.
[17]
Elesin Y, Lazarov B, Jensen J, Sigmund O (2014) Time domain topology optimization of 3d nanophotonic devices. Photonics Nanostruct Fundam Appl 12(1):23-33.
[18]
Geier M, Greiner A, Korvink JG (2006) Cascaded digital lattice Boltzmann automata for high Reynolds number flow. Phys Rev E 73(6):066,705.
[19]
Griewank A, Walther A (2000) Algorithm 799: revolve: an implementation of checkpointing for the reverse or adjoint mode of computational differentiation. Acm Trans Math Softw 26(1):19- 45.
[20]
Griewank A, Walther A (2008) Automatic differentiation of algorithms. SIAM.
[21]
Guennebaud G, Jacob B et al. (2010) Eigen v3. http://eigen.tuxfamily.org.
[22]
Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238-254.
[23]
Guo Z, Shi B, Zheng C (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39(4):325-342.
[24]
Hascoët L, Pascual V (2013) The tapenade automatic differentiation tool: principles, model, and specification. ACM Transactions Mathematical Software 39(3).
[25]
Hogan RJ (2014) Fast reverse-mode automatic differentiation using expression templates in C++. ACM Trans Math Softw (toms) 40(4):1-16.
[26]
Inamuro T, Yoshino M, Ogino F (1995) A non-slip boundary-condition for lattice boltzmann simulations. Phys Fluids 7(12):2928-2930.
[27]
Junk M, Yang Z (2008) Outflow boundary conditions for the lattice Boltzmann method. Progress in Computational Fluid Dynamics 8(1-4):38-48.
[28]
Krause MJ, Heuveline V (2013) Parallel fluid flow control and optimisation with lattice Boltzmann methods and automatic differentiation. Computers and Fluids 80:28-36.
[29]
Kreissl S, Pingen G, Maute K (2011) Topology optimization for unsteady flow. Int J Numer Methods Eng 87(13):1229-1253.
[30]
Ladd A, Verberg R (2001) Lattice-Boltzmann simulations of particle-fluid suspensions. J Stat Phys 104(5-6):1191-1251.
[31]
Latt J, Chopard B (2006) Lattice Boltzmann method with regularized pre-collision distribution functions. Math Comput Simul 72(2-6):165-168.
[32]
Latt J, Chopard B, Malaspinas O, Deville M, Michler A (2008) Straight velocity boundaries in the lattice Boltzmann method. Phys Rev E 77(5):056,703.
[33]
Lazarov B, Matzen R, Elesin Y (2011) Topology optimization of pulse shaping filters using the hilbert transform envelope extraction. Struct Multidiscip Optim 44:409-419.
[34]
Lin S, Zhao L, Guest JK, Weihs TP, Liu Z (2015) Topology optimization of fixed-geometry fluid diodes. J Mech Des 137(8):081,402.
[35]
Liu G, Geier M, Liu Z, Krafczyk M, Chen T (2014) Discrete adjoint sensitivity analysis for fluid flow topology optimization based on the generalized lattice Boltzmann method. Computers and Mathematics With Applications 68(10):1374-1392.
[36]
Mezrhab A, Moussaoui MA, Jami M, Naji H, Bouzidi M (2010) Double MRT thermal lattice Boltzmann method for simulating convective flows. Phys Lett A 374(34):3499-3507.
[37]
Nemili A, Özkaya E, Gauger NR, Kramer F, Höll T, Thiele F (2014) Optimal design of active flow control for a complex high-lift configuration. In: Proceedings of 7th AIAA flow control conference, 2014-2515.
[38]
Nørgaard S, Sigmund O, Lazarov B (2016) Topology optimization of unsteady flow problems using the lattice Boltzmann method. J Comput Phys 307:291-307.
[39]
Parker J (2008) A novel lattice Boltzmann method for treatment of multicomponent convection, diffusion and reaction phenomena in multiphase systems. PhD thesis, Oregon State University.
[40]
Sagebaum M, Gauger NR, Naumann U, Lotz J, Leppkes K (2013) Algorithmic differentiation of a complex C++ code with underlying libraries. Procedia Computer Science 18:208-217.
[41]
Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031-1055.
[42]
Spaid M, Phelan F (1997) Lattice boltzmann methods for modeling microscale flow in fibrous porous media. Phys Fluids 9(9):2468- 2474.
[43]
Succi S (2001) The lattice Boltzmann equation for fluid dynamics and beyond. Oxford University Press.
[44]
Tapenade website (2016) Tapenade on-line automatic differentiation engine. http://www-tapenade.inria.fr:8080/tapenade/index.jsp, accessed: 2016-10-18.
[45]
Wang Q, Moin P, Iaccarino G (2009) Minimal repetition dynamic checkpointing algorithm for unsteady adjoint calculation. SIAM J Sci Comput 31(4):2549-2567.
[46]
¿aniewski Wollstrok L, Rokicki J (2016) Adjoint lattice Boltzmann for topology optimization on multi-gpu architecture. Computers and Mathematics With Applications 71(3):833-848.
[47]
Zhou BY, Albring T, Gauger NR, Illario da Silva CR, Economon TD, Alonso JJ A discrete adjoint approach for jet-flap interaction noise reduction. In: Proceedings of 58th AIAA/ASCE/AHS/ASC structures, structural dynamics, and materials conference. AIAA SciTech Forum, AIAA, 2017-0130.
[48]
Zhu J, Ma J (2013) An improved gray lattice Boltzmann model for simulating fluid flow in multi-scale porous media. Adv Water Resour 56:61-76.
[49]
Özkaya E, Hay JA, Gauger NR, Schönwald N, Thiele F (2016) A two-level approach for design optimization of acoustic liners. In: Proceedings of 9th international conference on computational fluid dynamics, ICCFD9-2016-184.
[50]
Zou Q, He X (1997) On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Phys Fluids 9(6):1591-1598.

Cited By

View all
  • (2024)An integrated topology and shape optimization framework for stiffened curved shells by mesh deformationEngineering with Computers10.1007/s00366-023-01887-840:3(1771-1793)Online publication date: 1-Jun-2024
  • (2024)Level set topology optimization with sparse automatic differentiationStructural and Multidisciplinary Optimization10.1007/s00158-024-03894-967:10Online publication date: 14-Oct-2024
  • (2023)A framework for structural shape optimization based on automatic differentiation, the adjoint method and accelerated linear algebraStructural and Multidisciplinary Optimization10.1007/s00158-023-03601-066:7Online publication date: 20-Jun-2023
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Structural and Multidisciplinary Optimization
Structural and Multidisciplinary Optimization  Volume 56, Issue 5
November 2017
258 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 November 2017

Author Tags

  1. Automatic differentiation
  2. Lattice Boltzmann
  3. Topology optimization

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)An integrated topology and shape optimization framework for stiffened curved shells by mesh deformationEngineering with Computers10.1007/s00366-023-01887-840:3(1771-1793)Online publication date: 1-Jun-2024
  • (2024)Level set topology optimization with sparse automatic differentiationStructural and Multidisciplinary Optimization10.1007/s00158-024-03894-967:10Online publication date: 14-Oct-2024
  • (2023)A framework for structural shape optimization based on automatic differentiation, the adjoint method and accelerated linear algebraStructural and Multidisciplinary Optimization10.1007/s00158-023-03601-066:7Online publication date: 20-Jun-2023
  • (2023)Topology optimization using the lattice Boltzmann method for unsteady natural convection problemsStructural and Multidisciplinary Optimization10.1007/s00158-023-03522-y66:5Online publication date: 13-Apr-2023
  • (2022)Efficient multi-stage aerodynamic topology optimization using an operator-based analytical differentiationStructural and Multidisciplinary Optimization10.1007/s00158-022-03208-x65:4Online publication date: 1-Apr-2022
  • (2021)AuTO: a framework for Automatic differentiation in Topology OptimizationStructural and Multidisciplinary Optimization10.1007/s00158-021-03025-864:6(4355-4365)Online publication date: 1-Dec-2021
  • (2020)Three-dimensional topology optimization of thermal-fluid-structural problems for cooling system designStructural and Multidisciplinary Optimization10.1007/s00158-020-02731-z62:6(3347-3366)Online publication date: 1-Dec-2020
  • (2019)High-Performance Derivative Computations using CoDiPackACM Transactions on Mathematical Software10.1145/335690045:4(1-26)Online publication date: 9-Dec-2019

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media