[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Derandomizing polynomial identity tests means proving circuit lower bounds

Published: 01 December 2004 Publication History

Abstract

We show that derandomizing Polynomial Identity Testing is essentially equivalent to proving arithmetic circuit lower bounds for NEXP. More precisely, we prove that if one can test in polynomial time (or even nondeterministic subexponential time, infinitely often) whether a given arithmetic circuit over integers computes an identically zero polynomial, then either (i) NEXP ⊄ P/poly or (ii) Permanent is not computable by polynomial-size arithmetic circuits. We also prove a (partial) converse: If Permanent requires superpolynomial-size arithmetic circuits, then one can test in subexponential time whether a given arithmetic circuit of polynomially bounded degree computes an identically zero polynomial.Since Polynomial Identity Testing is a coRP problem, we obtain the following corollary: If RP = P (or even coRP ⊆ ∩ε > 0 NTIME(2nε), infinitely often), then NEXP is not computable by polynomial-size arithmetic circuits. Thus establishing that RP = coRP or BPP = P would require proving superpolynomial lower bounds for Boolean or arithmetic circuits. We also show that any derandomization of RNC would yield new circuit lower bounds for a language in NEXP.We also prove unconditionally that NEXPRP does not have polynomial-size Boolean or arithmetic circuits. Finally, we show that NEXP ⊄ P/poly if both BPP = P and low-degree testing is in P; here low-degree testing is the problem of checking whether a given Boolean circuit computes a function that is close to some low-degree polynomial over a finite field.

References

[1]
M. AGRAWAL & S. BISWAS (2003). Primality and identity testing via Chinese remaindering. J. ACM50, 429-443 (preliminary version in FOCS'99).
[2]
M. AGRAWAL, N. KAYAL & N. SAXENA (2002). PRIMES is in P. Manuscript.
[3]
A. E. ANDREEV, A. E. F. CLEMENTI & J. D. P. ROLIM (1998). A new general derandomization method. J. ACM45, 179-213 (preliminary version in ICALP'96).
[4]
S. ARORA, C. LUND, R. MOTWANI, M. SUDAN & M. SZEGEDY (1998). Proof verification and the hardness of approximation problems. J. ACM45, 501-555 (preliminary version in FOCS'92).
[5]
S. ARORA & S. SAFRA (1998). Probabilistic checking of proofs: A new characterization of NP. J. ACM45, 70-122 (preliminary version in FOCS'92).
[6]
S. ARORA & M. SUDAN (1997). Improved low-degree testing and its applications. In Proc. 29th Annual ACM Symposium on Theory of Computing, 485-495.
[7]
L. BABAI (1985). Trading group theory for randomness. In Proc. 17th Annual ACM Symposium on Theory of Computing, 421-429.
[8]
L. BABAI, L. FORTNOW & C. LUND (1991). Non-deterministic exponential time has two-prover interactive protocols. Comput. Complexity1, 3-40.
[9]
L. BABAI, L. FORTNOW, N. NISAN & A. WIGDERSON (1993). BPP has subexponential time simulations unless EXPTIME has publishable proofs. Comput. Complexity3, 307-318.
[10]
L. BABAI & S. MORAN (1988). Arthur-Merlin games: A randomized proof system, and a hierarchy of complexity classes. J. Comput. System Sci.36, 254-276.
[11]
D. BEAVER & J. FEIGENBAUM (1990). Hiding instances in multioracle queries. In Proc. 7th Annual Symposium on Theoretical Aspects of Computer Science, Lecture Notes in Comput. Sci. 415, Springer, 37-48.
[12]
M. BLUM, A. K. CHANDRA & M. N. WEGMAN (1980). Equivalence of free Boolean graphs can be tested in polynomial time. Inform. Process. Lett.10, 80-82.
[13]
M. BLUM & S. KANNAN (1995). Designing programs that check their work. J. ACM42, 269-291.
[14]
R. BOPPANA & R. HIRSCHFELD (1989). Pseudo-random generators and complexity classes. In Randomness and Computation, S. Micali (ed.), Adv. Comput. Research 5, JAI Press, Greenwich, CT, 1-26.
[15]
R.P. BRENT (1974). The parallel evaluation of general arithmetic expressions. J. ACM21, 201-206.
[16]
H. BUHRMAN & L. FORTNOW (1999). One-sided versus two-sided error in probabilistic computation. In Proc. 16th Annual Symposium on Theoretical Aspects of Computer Science, C. Meinel & S. Tison (eds.), Lecture Notes in Comput. Sci. 1563, Springer, 100-109.
[17]
H. BUHRMAN, L. FORTNOW & L. THIERAUF (1998). Nonrelativizing separations. In Proc. 13th Annual IEEE Conference on Computational Complexity, 8-12.
[18]
S. R. Buss, S. A. COOK, A. GUPTA & V. RAMACHANDRAN. (1992). An optimal parallel algorithm for formula evaluation. SIAM J. Comput.21, 755-780.
[19]
S. CHARI, P. ROHATGI & A. SRINIVASAN (1995). Randomness-optimal unique element isolation with applications to perfect matching and related problems. SIAM J. Comput.24, 1036-1050.
[20]
Z. CHEN & M. KAO (2000). Reducing randomness via irrational numbers. SIAM J. Comput.29, 1247-1256 (preliminary version in STOC'97).
[21]
A. L. CHISTOV (1985). Fast parallel evaluation of the rank of matrices over a field of arbitrary characteristic. In Fundamentals of Computation Theory, Lecture Notes in Comput. Sci. 199, Springer, 63-79.
[22]
M. CLAUSEN, A. DRESS, J. GRABMEIER & M. KARPINSKY (1991). On zero-testing and interpolation of k-sparse multivariate polynomials over finite fields. Theoret. Comput. Sci.84, 151-164.
[23]
R. A. DEMILLO & R. J. LIPTON (1978). A probabilistic remark on algebraic program testing. Inform. Process. Lett.7, 193-195.
[24]
U. FEICE, S. GOLDWASSER, L. LOVÁSZ, S. SAFRA & M. SZECEDY (1996). Interactive proofs and the hardness of approximating cliques. J. ACM43, 268-292 (preliminary version in FOCS'91).
[25]
J. VON ZUR GATHEN (1987). Feasible arithmetic computations: Valiant's hypothesis. J. Symbolic Comput.4, 137-172.
[26]
P. GEMMELL & M. SUDAN (1992). Highly resilient correctors for multivariate polynomials. Inform. Process. Lett.43, 169-174.
[27]
O. GOLDREICH & D. ZUCKERMAN (1997). Another proof that BPP⊆⊆PH (and more). Electronic Colloq. Comput. ComplexityTR97-045.
[28]
D. Yu. GRIGORIEV, M. KARPINSKY & M. F. SINGER (1990). Fast parallel algorithms for sparse multivariate polynomial interpolation over finite fields. SIAM J. Comput.19, 1059-1063.
[29]
O. H. IBARRA & S. MORAN (1983). Probabilistic algorithms for deciding equivalence of straight-line programs. J. ACM30, 217-228.
[30]
R. IMPAGLIAZZO, V. KABANETS & A. WIGDERSON (2002). In search of an easy witness: Exponential time vs. probabilistic polynomial time. J. Comput. System Sci.65, 672-694 (preliminary version in CCC'01).
[31]
R. IMPAGLIAZZO, R. SHALTIEL & A. WIGDERSON (1999). Near-optimal conversion of hardness into pseudo-randomness. In Proc. 40th Annual IEEE Symposium on Foundations of Computer Science, 181-190.
[32]
R. IMPAGLIAZZO, R. SHALTIEL & A. WIGDERSON (2000). Extractors and pseudo-random generators with optimal seed length. In Proc. 32nd Annual ACM Symposium on Theory of Computing, 1-10.
[33]
R. IMPAGLIAZZO & A. WIGDERSON (1997). P = BPP if E requires exponential circuits: Derandomizing the XOR Lemma. In Proc. 29th Annual ACM Symposium on Theory of Computing, 220-229.
[34]
R. IMPAGLIAZZO & A. WIGDERSON (2001). Randomness vs time: Derandomization under a uniform assumption. J. Comput. System Sci.63, 672-688 (preliminary version in FOCS'98).
[35]
V. KABANETS (2001). Easiness assumptions and hardness tests: trading time for zero error. J. Comput. System Sci.63, 236-252 (preliminary version in CCC'00).
[36]
V. KABANETS, C. RACKOFF & S. COOK (2000). Efficiently approximable real-valued functions. Electronic Colloq. Comput. ComplexityTR00-034.
[37]
E. KALTOFEN (1988). Greatest common divisors of polynomials given by straight-line programs. J. ACM35, 231-264.
[38]
E. KALTOFEN (1989). Factorization of polynomials given by straight-line programs. In Randomness and Computation, S. Micali (ed.), Adv. Comput. Research 5, JAI Press, Greenwich, CT, 375-412.
[39]
E. KALTOFEN (1992). On computing determinants of matrices without divisions. In Proc. 1992 International Symposium on Symbolic and Algebraic Computation (ISSAC'92), P. S. Wang (ed.), 342-349.
[40]
A. KLIVANS & D. VAN MELKEBEEK (2002). Graph nonisomorphism has subexponential size proofs unless the polynomial-time hierarchy collapses. SIAM J. Comput.31, 1501-1526 (preliminary version in STOC'99).
[41]
. KLIVANS & D. SPIELMAN (2001). Randomness efficient identity testing of multivariate polynomials. In Proc. 33rd Annual ACM Symposium on Theory of Computing, 216-223.
[42]
D. LEWIN & S. VADHAN (1998). Checking polynomial identities over any field: Towards a derandomization? In Proc. 30th Annual ACM Symposium on Theory of Computing, 438-447.
[43]
N. LINIAL, Y. MANSOUR & N. NISAN (1993). Constant depth circuits, Fourier transform and learnability, J. ACM40, 607-620.
[44]
R. LIPTON (1991). New directions in testing. In Distributed Computing and Cryptography, J. Feigenbaum & M. Merrit (eds.), DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 2, Amer. Math. Soc., 191-202.
[45]
L. LOVÁSZ (1979). On determinants, matchings and random algorithms. In Fundamentals of Comput. Theory, L. Budach (ed.), Akademie-Verlag, Berlin, 565-574.
[46]
C. LUND, L. FORTNOW, H. KARLOFF & N. NISAN (1992). Algebraic methods for interactive proof systems, J. ACM39, 859-868.
[47]
K. MULMULEY, U. VAZIRANI & V. VAZIRANI (1987). Matching is as easy as matrix inversion. Combinatorica7, 105-113.
[48]
N. NISAN & A. WIGDERSON (1994). Hardness vs. randomness, J. Comput. System Sci.49, 149-167.
[49]
C. H. PAPADIMITRIOU (1994). Computational Complexity. Addison-Wesley, Reading, MA.
[50]
R. PATURI, P. PUDLÁK, M.E. SAKS & F. ZANE (1998). An improved exponential-time algorithm for k-SAT. In Proc. 39th Annual IEEE Symposium on Foundations of Computer Science, 628-637.
[51]
R. PATURI, P. PUDLÁK & F. ZANE (1999). Satisfiability coding lemma. Chicago J. Theoret. Comput. Sci., Article 11, 19 pp. (preliminary version in FOCS'97).
[52]
R. PATURI, M. E. SAKS & F. ZANE (2000). Exponential lower bounds for depth three Boolean circuits. Comput. Complexity9, 1-15 (preliminary version in STOC'97).
[53]
V. R. PRATT (1975). Every prime has a succinct certificate. SIAM J. Comput.4, 214-220.
[54]
R. RAZ, O. REINGOLD & S. P. VADHAN (2002). Extracting all the randomness and reducing the error in Trevisan's extractors. J. Comput. System Sci.65, 97-128 (preliminary version in STOC'99).
[55]
R. RAZ & S. SAFRA (1997). A sub-constant error-probability low-degree test, and a sub-constant error-probability PCP characterization of NP. In Proc. 29th Annual ACM Symposium on Theory of Computing, 475-484.
[56]
A. A. RAZBOROV & S. RUDICH (1997). Natural proofs. J. Comput. System Sci.55, 24-35.
[57]
R. M. ROTH & G. M. BENEDEK (1991). Interpolation and approximation of sparse multivariate polynomials. SIAM J. Comput.20, 291-314.
[58]
R. RUBINFELD & M. SUDAN (1996). Robust characterizations of polynomials with applications to program testing. SIAM J. Comput.25, 252-271.
[59]
J. T. SCHWARTZ (1980). Fast probabilistic algorithms for verification of polynomial identities. J. ACM27, 701-717.
[60]
R. SHALTIEL & C. UMANS (2001). Simple extractors for all min-entropies and a new pseudo-random generator. In Proc. 42nd Annual IEEE Symposium on Foundations of Computer Science, 648-657.
[61]
A. SHAMIR (1992). IP = PSPACE. J. ACM39, 869-877.
[62]
V. STRASSEN (1973). Vermeidung von Divisionen. J. Reine Angew. Math.264, 182-202.
[63]
M. SUDAN (1997). Decoding of Reed Solomon codes beyond the error-correction bound. J. Complexity13, 180-193.
[64]
M. SUDAN, L. TREVISAN & S. VADHAN (2001). Pseudorandom generators without the XOR lemma. J. Comput. System Sci.62, 236-266 (preliminary version in STOC'99).
[65]
S. TODA (1991). PP is as hard as the polynomial-time hierarchy. SIAM J. Comput.20, 865-877.
[66]
C. UMANS (2003). Pseudo-random generators for all hardnesses. J. Comput. System Sci.67, 419-440 (preliminary version in STOC'02).
[67]
L. VALIANT (1979a). Completeness classes in algebra. In Proc. 11th Annual ACM Symposium on Theory of Computing, 249-261.
[68]
L. VALIANT (1979b). The complexity of computing the permanent. Theoret. Comput. Sci.8, 189-201.
[69]
L. VALIANT & V. VAZIRANI (1986). NP is as easy as detecting unique solutions. Theoret. Comput. Sci.47, 85-93.
[70]
A.C. YAO (1982). Theory and applications of trapdoor functions. In Proc. 23rd Annual IEEE Symposium on Foundations of Computer Science, 80-91.
[71]
F. ZANE (1998). Circuits, CNFs, and Satisfiability. Ph.D. thesis, UCSD.
[72]
R.E. ZIPPEL (1979). Probabilistic algorithms for sparse polynomials. In Proc. International Symposium on Symbolic and Algebraic Manipulation (EUROSAM'79), Lecture Notes in Comput. Sci. 72, Springer 216-226.

Cited By

View all
  • (2024)Hitting Sets for Orbits of Circuit Classes and Polynomial FamiliesACM Transactions on Computation Theory10.1145/366580016:3(1-50)Online publication date: 23-May-2024
  • (2024)Learning the Coefficients: A Presentable Version of Border Complexity and Applications to Circuit FactoringProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649743(130-140)Online publication date: 10-Jun-2024
  • (2024)Black-Box Identity Testing of Noncommutative Rational Formulas in Deterministic Quasipolynomial TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649693(106-117)Online publication date: 10-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Computational Complexity
Computational Complexity  Volume 13, Issue 1/2
December 2004
89 pages

Publisher

Birkhauser Verlag

Switzerland

Publication History

Published: 01 December 2004

Author Tags

  1. circuit lower bounds
  2. derandomization
  3. hardness-randomness tradeoffs
  4. polynomial identity testing

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Hitting Sets for Orbits of Circuit Classes and Polynomial FamiliesACM Transactions on Computation Theory10.1145/366580016:3(1-50)Online publication date: 23-May-2024
  • (2024)Learning the Coefficients: A Presentable Version of Border Complexity and Applications to Circuit FactoringProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649743(130-140)Online publication date: 10-Jun-2024
  • (2024)Black-Box Identity Testing of Noncommutative Rational Formulas in Deterministic Quasipolynomial TimeProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649693(106-117)Online publication date: 10-Jun-2024
  • (2024)Superpolynomial Lower Bounds Against Low-Depth Algebraic CircuitsCommunications of the ACM10.1145/361109467:2(101-108)Online publication date: 25-Jan-2024
  • (2024)A combinatorial algorithm for computing the entire sequence of the maximum degree of minors of a generic partitioned polynomial matrix with submatricesMathematical Programming: Series A and B10.1007/s10107-023-01949-1204:1-2(27-79)Online publication date: 1-Mar-2024
  • (2023)Linear Independence, Alternants, and ApplicationsProceedings of the 55th Annual ACM Symposium on Theory of Computing10.1145/3564246.3585149(441-454)Online publication date: 2-Jun-2023
  • (2023)Computing valuations of the Dieudonné determinantsJournal of Symbolic Computation10.1016/j.jsc.2022.10.010116:C(284-323)Online publication date: 1-May-2023
  • (2023)Multilinear Schwartz-Zippel Mod N and Lattice-Based Succinct ArgumentsTheory of Cryptography10.1007/978-3-031-48621-0_14(394-423)Online publication date: 29-Nov-2023
  • (2022)A Polynomial Degree Bound on Equations for Non-rigid Matrices and Small Linear CircuitsACM Transactions on Computation Theory10.1145/354368514:2(1-14)Online publication date: 14-Sep-2022
  • (2022)Ideals, determinants, and straightening: proving and using lower bounds for polynomial idealsProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520025(389-402)Online publication date: 9-Jun-2022
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media