[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A geometric model for active contours in image processing

Published: 01 December 1993 Publication History

Abstract

We propose a new model for active contours based on a geometric partial differential equation. Our model is intrinsec, stable (satisfies the maximum principle) and permits a rigorous mathematical analysis. It enables us to extract smooth shapes (we cannot retrieve angles) and it can be adapted to find several contours simultaneously. Moreover, as a consequence of the stability, we can design robust algorithms which can be engineed with no parameters in applications. Numerical experiments are presented.

References

[1]
Alvarez, L., Lions, P.L., Morel, J.M. (1991): Image selective smoothing and edge detection by nonlinear diffusion (II). Cahier du CEREMADE no 9046, Univ. Paris IX-Dauphine, Paris
[2]
Amini, A.A., Tehrani, S., Weymouth, T.E. (1988): Using dynamic programming for minimizing the energy of active contours in the presence of hard constraints. Proc. Second ICCV. 95---99
[3]
Ayache, N., Boissonat, J.D., Brunet, E., Cohen, L., Chièze, J.P., Geiger, B., Monga, O., Rocchisani, J.M., Sander, P. (1989): Building highly structured volume representations in 3d medical images. Computer Aided Radiology. Berlin
[4]
Barles, G. (1985): Remarks on a flame propagation model. Rapport INRIA,464, 1---38
[5]
Berger, M.O. (1990): Snake growing. O. Faugeras, ed., Computer Vision-ECCV90. Lect. Notes Comput. Sci.427, 570---572
[6]
Berger, M.O., Mohr, R. (1990): Towards Autonomy in Active Contour Models. Proc. 10th Int. Conf. Patt. Recogn. Atlantic City, NY, vol1, 847---851
[7]
Blake, A., Zisserman, A. (1987): Visual Reconstruction. MIT Press, Cambridge, MA
[8]
Chen, Y.-G., Giga, Y., Goto, S. (1989): Uniqueness and Existence of Viscosity Solutions of Generalized Mean Curvature Flow Equations. Preprint Series in Math. Ser. 57. July, Hokkaido University, Sapporo, Japan
[9]
Cinquin, P. (1986): Un modèle pour la représentation d'images médicales 3d: Proceedings Euromédicine. (Sauramps Médical)86, 57---61
[10]
Cinquin, P. (1987): Application des Fonctions Spline au Traitement d'Images Numériques. Université Joseph Fourier, Grenoble
[11]
Cinquin, P., Goret, C., Marque, I., Lavallee, S. (1987): Morphoscopie et modélisation continue d'images 3d. Conférence AFCET IA & Reconnaissance des Formes. AFCET pp. 907---922, Paris
[12]
Cohen, L.D. (1991): On active Contour Models and Balloons. CVGIP: Image Understanding53, 211---218
[13]
Cohen, L.D., Cohen, I. (1990): A finite element method applied to new active contour models and 3D reconstruction from cross sections. Proc. Third ICCV, 587---591
[14]
Cohen, L.D. (1989): On active Contour Models. Technical Report 1035, INRIA, Rocquencourt, Le Chesnay, France
[15]
Crandall, M.G., Lions, P.L. (1983): Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.277, 1---42
[16]
Crandall, M.G., Evans, L.C., Lions, P.L. (1984): Some properties of Viscosity Solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc.282, 487---502
[17]
Crandall, M.G., Ishii, I., Lions, P.L. (1991): User's guide to Viscosity Solutions of Second Order Partial Differential Equations. Cahier du CEREMADE no 9039. Univ. Paris IX-Dauphine, Paris
[18]
Evans, L.C., Spruck, J. (1991): Motion of level sets by mean curvature I. J. Diff. Geometry,33, 635---681
[19]
Friedman, A. (1982): Variational Principles and Free Boundary Problems. Wiley, New York
[20]
Gage, M. (1983): An isoperimetric inequality with applications to curve shortening. Duke Math. J.50, 1225---1229
[21]
Gage, M. (1984): Cuve shortening makes convex curves circular. Invent. Math.76, 357---364
[22]
Gage, M., Hamilton, R.S. (1986): The heat equation shrinking convex plane curves. J. Diff. Geom.23, 69---96
[23]
Giga, Y., Goto, S., Ishii, I., Sato, M.-H. (1990): Comparison Principle and Convexity Preserving Properties of Singular Degenerate Parabolic Equations on Unbounded Domains. Preprint Hokkaido University, 1---32, Sapporo, Japan
[24]
Grayson, M.A. (1987): The heat equation shrinks embedded plane curves to round points. J. Diff. Geom.26, 285---314
[25]
Hirsch, M. (1976): Differential Topology. Springer, Berlin Heidelberg New York
[26]
Kass, M., Witkin, A., Terzopoulos, D. (1988): Snakes: active contour models. Int. J. Comput. Vision.1, 321---331
[27]
Kass, M., Witkin, A., Terzopoulos, D. (1987): Snakes: active contour models. Proc. First ICCV, 259---267
[28]
Ladyzhenskaja, O.A., Solonnikov, V.A., Ural'tseva, N.N. (1968): Linear and Quasilinear Equations of Parabolic Type. American Mathematical Society, Providence, R.I.
[29]
Leroy, B. (1991): Etude de quelques propriétés des modèles de contours actifs ("snakes"). Rapport de stage de D.E.A. Univ. Paris-IX Dauphine, Septembre
[30]
Lions, P.L. (1982). Generalized Solutions of Hamilton-Jacobi Equations. Research Notes in Mathematics69, Pitman, Boston
[31]
Marr, D. (1982): Vision. Freeman, San Francisco
[32]
Marr, D., Hildreth, E. (1980): A theory of edge detection. Proc. R. Soc. Lond. B207, 187---217
[33]
Osher, S., Sethian, J.A. (1988): Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. Comput. J. Physics.79, 12---49
[34]
Poggio, T., Torre, V., Koch, C. (1985): Computational vision and regularization theory. Nature,317 (6035), 314---319
[35]
Terzopoulos, D. (1986): Regularization of inverse visual problems involving discontinuities. IEEE Trans. Pattern Anal. Mach. Intell.8: 413---424
[36]
Terzopoulos, D. (1988): The computation of visible surface representations. IEEE Trans. Pattern Anal. Mach. Intell.10(4), 417---438
[37]
Terzopoulos, D., Witkin, A., Kass, M. (1987): Symmetry seeking models for 3d object reconstruction. Proc. First ICCV, 269---276
[38]
Terzopoulos, D., Witkin, A., Kass, M. (1988): Constraints on deformable models: recovering 3d shape and nonrigid motion. Artif. Intell.36, 91---123
[39]
Zucker, S., David, C., Dobbins, A., Iverson, L. (1988): The Organization of Curve Detection: Coarse Tangent Fields and Fine Spline Coverings. In Second International Conference on Computer Vision. pp. 568---577, Tampa Florida (USA)

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Numerische Mathematik
Numerische Mathematik  Volume 66, Issue 1
December 1993
524 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 December 1993

Author Tags

  1. 40F10
  2. 49A50
  3. 49F22
  4. 53A10
  5. 76T05
  6. 80A15
  7. 82A60

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)A Two-Way Active Contour Model for Incomplete Contour SegmentationCircuits, Systems, and Signal Processing10.1007/s00034-024-02754-743:10(6437-6458)Online publication date: 1-Oct-2024
  • (2023)Active contour model based on local Kullback–Leibler divergence for fast image segmentationEngineering Applications of Artificial Intelligence10.1016/j.engappai.2023.106472123:PCOnline publication date: 1-Aug-2023
  • (2023)EDIT SoftwareComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2023.107448232:COnline publication date: 1-Apr-2023
  • (2023)Superpixel segmentations for thin sectionsComputers & Geosciences10.1016/j.cageo.2022.105232170:COnline publication date: 1-Jan-2023
  • (2023)A Comprehensive Review of Various Approach for Medical Image Segmentation and Disease PredictionWireless Personal Communications: An International Journal10.1007/s11277-023-10682-z132:3(1819-1848)Online publication date: 8-Aug-2023
  • (2023)A cooperative framework for automated segmentation of tumors in brain MRI imagesMultimedia Tools and Applications10.1007/s11042-023-14736-z82:26(41381-41404)Online publication date: 29-Mar-2023
  • (2022)A Breast Cancer Contour Detection With Level Sets and SVM ModelInternational Journal of Knowledge and Systems Science10.4018/IJKSS.30547713:1(1-14)Online publication date: 2-Sep-2022
  • (2022)A hybrid active contour model based on pre-fitting energy and adaptive functions for fast image segmentationPattern Recognition Letters10.1016/j.patrec.2022.04.025158:C(71-79)Online publication date: 1-Jun-2022
  • (2022)An active contour model driven by adaptive local pre-fitting energy function based on Jeffreys divergence for image segmentationExpert Systems with Applications: An International Journal10.1016/j.eswa.2022.118493210:COnline publication date: 30-Dec-2022
  • (2022)Deformable models for image segmentationComputers & Mathematics with Applications10.1016/j.camwa.2022.05.034119:C(288-311)Online publication date: 14-Jul-2022
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media