[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Reduced Gröbner Bases, Free Difference-Differential Modules and Difference-Differential Dimension Polynomials

Published: 01 October 2000 Publication History

Abstract

We define a special type of reduction in a free left module over a ring of difference differential operators and use the idea of the Gr bner basis method to develop a technique that allows us to determine the Hilbert function of a finitely generated difference differential module equipped with the natural double filtration. The results obtained are applied to the study of difference differential field extensions and systems of difference differential equations. We prove a theorem on difference differential dimension polynomial that generalizes both the classical Kolchin s theorem on dimension polynomial of a differential field extension and the corresponding author s result for difference fields. We also determine invariants of a difference differential dimension polynomial and consider a method of computation of the dimension polynomial associated with a system of linear difference differential equations.

References

[1]
J. Apel, A Gröbner approach to involutive bases, J. Symb. Comput., 19 (1995) 441-457.
[2]
J. Apel, The theory of involutive divisions and an application to Hilbert function computations, J. Symb. Comput., 25 (1998) 683-704.
[3]
I.N. Balaba, The dimension polynomials of the extensions of difference fields, Vestnik Mosk. Univ. (In Russian.), Ser. I (1984) 31-35.
[4]
T. Becker, V. Weispfenning, Springer-Verlag, New York, 1993.
[5]
B. Buchberger, 1965
[6]
P.J. Cameron, Combinatorics, Cambridge University Press, Cambridge, 1994.
[7]
G. Carra Ferro, 1989.
[8]
G. Carra Ferro, Differential Gröbner bases in one variable and in the partial case. Algorithms and software for symbolic analysis of nonlinear systems, Math. Comput. Modelling, 25 (1997) 1-10.
[9]
R.M. Cohn, Interscience, New York, 1965.
[10]
A. Einstein, 1953.
[11]
D. Eisenbud, Springer-Verlag, New York, 1995.
[12]
P. Evanovich, Finitely generated extensions of partial difference fields, Trans. Am. Math. Soc., 281 (1984) 795-811.
[13]
M. Insa, F. Pauer, Gröbner bases in rings of differential operators, Cambridge University Press, New York, 1998.
[14]
J. Johnson, Differential dimension polynomials and a fundamental theorem on differential modules, Amer. J. Math., 91 (1969) 239-248.
[15]
J. Johnson, Kähler differentials and differential algebra in arbitrary characteristic, Trans. Am. Math. Soc., 192 (1974) 201-208.
[16]
J. Johnson, W. Sit, On the differential transcendence polynomials of finitely generated differential field extensions, Am. J. Math., 101 (1979) 1249-1263.
[17]
E.R. Kolchin, The notion of dimension in the theory of algebraic differential equations, Bull. Am. Math. Soc., 70 (1964) 570-573.
[18]
E.R. Kolchin, Academic Press, New York, 1973.
[19]
M.V. Kondrateva, A.B. Levin, A.V. Mikhalev, E.V. Pankratev, Computation of dimension polynomials, Int. J. Algebra Comput., 2 (1992) 117-137.
[20]
M.V. Kondrateva, A.B. Levin, A.V. Mikhalev, E.V. Pankratev, Kluwer Academic Publishers, Dordrecht, 1999.
[21]
M.V. Kondrateva, E.V. Pankratev, 1992.
[22]
A.B. Levin, Characteristic polynomials of filtered difference modules and of difference field extensions, Russ. Math Surv., 33 (1978) 165-166.
[23]
A.B. Levin, Characteristic polynomials of inversive difference modules and some properties of inversive difference dimension, Russ. Math Surv., 35 (1980) 217-218.
[24]
A.B. Levin, Type and dimension of inversive difference vector spaces and difference algebras, Dep. VINITI (In Russian) (1982) 1-36.
[25]
A.B. Levin, Characteristic polynomials of ¿ -modules and finitely generated ¿ -field extensions, Dep. VINITI (In Russian) (1985) 1-23.
[26]
A.B. Levin, A.V. Mikhalev, Differential dimension polynomial and the strength of a system of differential equations, 1987.
[27]
K. Madlener, B. Reinert, A generalization of Gröbner basis algorithms to polycyclic group rings, J. Symb. Comput., 25 (1998) 23-43.
[28]
A.V. Mikhalev, E.V. Pankratev, Differential dimension polynomial of a system of differential equations, Moscow State Univ. Press, Moscow, 1980.
[29]
A.V. Mikhalev, E.V. Pankratev, Moscow State Univ. Press, Moscow, 1989.
[30]
F. Mora, H.M. Möller, 1983.
[31]
P. Nordbeck, On some basic applications of Gröbner bases in noncommutative polynomial rings, Cambridge University Press, New York, 1998.
[32]
E.V. Pankrat¿ev, Computations in differential and difference modules. Symmetries of Partial Differential Equations, Part III, Acta Appl. Math., 16 (1989) 167-189.
[33]
M. van der Put, M. Singer, Springer, Berlin, 1997.
[34]
J. Riordan, John Wiley and Sons Inc, New York, 1968.
[35]
W. Sit, Well-ordering of certain numerical polynomials, Trans. Am. Math. Soc., 212 (1975) 37-45.
[36]
W. Sit, Differential dimension polynomials of finitely generated extensions, Proc. Am. Math. Soc., 68 (1978) 251-257.
[37]
R. Stanley, Cambridge University Press, New York, 1997.
[38]
I. Tomescu, John Wiley and Sons Inc, New York, 1985.

Cited By

View all
  • (2021)Generalized Gröbner Bases and New Properties of Multivariate Difference Dimension PolynomialsProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465544(273-280)Online publication date: 18-Jul-2021
  • (2018)Bivariate Dimension Polynomials of Non-Reflexive Prime Difference-Differential Ideals.Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209008(255-262)Online publication date: 11-Jul-2018
  • (2015)Computation of Dimension in Filtered Free Modules by Gröbner ReductionProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756680(181-188)Online publication date: 24-Jun-2015
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Symbolic Computation
Journal of Symbolic Computation  Volume 30, Issue 4
Special issue on applications of the Gröbner basis method
Oct. 2000
151 pages
ISSN:0747-7171
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 October 2000

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 18 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2021)Generalized Gröbner Bases and New Properties of Multivariate Difference Dimension PolynomialsProceedings of the 2021 International Symposium on Symbolic and Algebraic Computation10.1145/3452143.3465544(273-280)Online publication date: 18-Jul-2021
  • (2018)Bivariate Dimension Polynomials of Non-Reflexive Prime Difference-Differential Ideals.Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation10.1145/3208976.3209008(255-262)Online publication date: 11-Jul-2018
  • (2015)Computation of Dimension in Filtered Free Modules by Gröbner ReductionProceedings of the 2015 ACM International Symposium on Symbolic and Algebraic Computation10.1145/2755996.2756680(181-188)Online publication date: 24-Jun-2015
  • (2015)Dimension Polynomials of Intermediate Fields of Inversive Difference Field ExtensionsRevised Selected Papers of the 6th International Conference on Mathematical Aspects of Computer and Information Sciences - Volume 958210.1007/978-3-319-32859-1_31(362-376)Online publication date: 11-Nov-2015
  • (2013)Multivariate difference-differential dimension polynomials and new invariants of difference-differential field extensionsProceedings of the 38th International Symposium on Symbolic and Algebraic Computation10.1145/2465506.2465521(267-274)Online publication date: 26-Jun-2013
  • (2008)Computing difference-differential dimension polynomials by relative Gröbner bases in difference-differential modulesJournal of Symbolic Computation10.1016/j.jsc.2008.02.00143:10(726-745)Online publication date: 1-Oct-2008
  • (2007)Gröbner bases with respect to several term orderings and multivariate dimension polynomialsProceedings of the 2007 international symposium on Symbolic and algebraic computation10.1145/1277548.1277583(251-260)Online publication date: 29-Jul-2007
  • (2006)Gröbner bases in difference-differential modulesProceedings of the 2006 international symposium on Symbolic and algebraic computation10.1145/1145768.1145825(353-360)Online publication date: 9-Jul-2006

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media