[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/645825.668936guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA

Published: 18 September 2000 Publication History

Abstract

The direct application of statistics to stochastic optimization based on iterated density estimation has become more important and present in evolutionary computation over the last few years. The estimation of densities over selected samples and the sampling from the resulting distributions, is a combination of the recombination and mutation steps used in evolutionary algorithms. We introduce the framework named IDEA to formalize this notion. By combining continuous probability theory with techniques from existing algorithms, this framework allows us to define new continuous evolutionary optimization algorithms.

References

[1]
T. Bäck and H-P. Schwefel. Evolution strategies I: Variants and their computational implementation. In G. Winter, J. Priaux, M. Gain, and P. Cuesta, editors. Genetic Algorithms in Engineering and Computer Science, Proc. of the First Short Course EUROGEN'95, pages 111-126. Wiley, 1995.
[2]
S. Baluja and R. Caruana. Removing the genetics from the standard genetic algorithm. In A. Prieditis and S. Russell, editors, Proc. of the 12th Int. Conf. on Machine Learning, pages 38-46. Morgan Kauffman Pub., 1995.
[3]
S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial optimization: Learning the structure of the search space. In D.H. Fisher, editor, Proc. of the 1997 Int. Conf. on Machine Learning. Morgan Kauffman Pub., 1997.
[4]
J.S. De Bonet, C. Isbell, and P. Viola. MIMIC: Finding optima by estimating probability densities. Advances in Neural Information Processing, 9, 1996.
[5]
P.A.N. Bosman and D. Thierens. An algorithmic framework for density estimation based evolutionary algorithms. Utrecht University Technical Report UU-CS-1999- 46. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-1999/1999-46.ps.gz, 1999.
[6]
P.A.N. Bosman and D. Thierens. Linkage information processing in distribution estimation algorithms. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 60-67. M.K. Pub., 1999.
[7]
P.A.N. Bosman and D. Thierens. Continuous iterated density estimation evolutionary algorithms within the IDEA framework. Utrecht Univ. Tech. Rep. UU-CS- 2000-15. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-15.ps.gz, 2000.
[8]
P.A.N. Bosman and D. Thierens. IDEAs based on the normal kernels probability density function. Utrecht University Technical Report UU-CS-2000-11. ftp://ftp.cs.uu.nl/pub/RUU/CS/techreps/CS-2000/2000-11.ps.gz, 2000.
[9]
D. Edwards. Introduction To Graphical Modelling. Springer-Verlag, 1995.
[10]
M. Gallagher, M. Fream, and T. Downs. Real-valued evolutionary optimization using a flexible probability density estimator. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Gen. and Evol. Camp. Conf., pages 840-846. M.K. Pub., 1999.
[11]
D.E. Goldberg. Genetic Algorithms In Search, Optimization, And Machine Learning. Addison-Wesley, Reading, 1989.
[12]
G. Harik. Linkage learning via probabilistic modeling in the ECGA. IlliGAL Tech. Report 99010. ftp://ftp-illigal.ge.uiuc.edu/pub/papers/IlliGALs/99010.ps.Z, 1999.
[13]
G. Harik, F. Lobo, and D.E. Goldberg. The compact genetic algorithm. In Proc. of the 1998 IEEE Int. Conf. on Evol. Comp., pages 523-528. IEEE Press, 1998.
[14]
J.H. Holland. Adaptation in Natural and Artificial Systems. Ann Arbor: University of Michigan Press, 1975.
[15]
P. Larranaga, R. Etxeberria, J.A. Lozano, and J.M. Peña. Optimization by learning and simulation of bayesian and gaussian networks. University of the Basque Country Technical Report EHU-KZAA-IK-4/99. http://www.sc.ehu.es/ccwbayes/ postscript/kzaa-ik-04-99.ps, 1999.
[16]
H. Mühlenbein and T. Mahnig. FDA - a scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol. Comp., 7:353-376, 1999.
[17]
H. Mühlenbein, T. Mahnig, and O. Rodriguez. Schemata, distributions and graphical models in evolutionary optimization. Journal of Heuristics, 5:215-247, 1999.
[18]
H. Mühlenbein and G. Paaß. From recombination of genes to the estimation of distributions I. binary parameters. In A.E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, pages 178-187. Springer, 1998.
[19]
M. Pelikan, D.E. Goldberg, and E. Cantú-Paz. BOA: The bayesian optimization algorithm. In W. Banzhaf, J. Daida, A.E. Eiben, M.H. Garzon, V. Honavar, M. Jakiela, and R.E. Smith, editors, Proc. of the GECCO-1999 Genetic and Evolutionary Computation Conference, pages 525-532. Morgan Kaufmann Pub., 1999.
[20]
M. Pehkan, D.E. Goldberg, and F. Lobo. A survey of optimization by building and using probabilistic models. IlliGAL Technical Report 99018. ftp://ftp-illigal. ge.uiuc.edu/pub/papers/IlliGALs/99018.ps.Z, 1999.
[21]
M. Pelikan and H. Mühlenbein. The bivariate marginal distribution algorithm. In R. Roy, T. Furuhashi, K. Chawdry, and K. Pravir, editors. Advances in Soft Computing - Engineering Design and Manufacturing. Springer-Verlag, 1999.
[22]
M. Sebag and A. Ducoulombier. Extending population-based incremental learning to continuous search spaces. In A.E. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel, editors, Parallel Problem Solving from Nature - PPSN V, pages 418-427. Springer, 1998.
[23]
I. Servet, L. Trave-Massuyes, and D. Stern. Telephone network traffic overloading diagnosis and evolutionary computation technique. In J.K. Hao, E. Lutton, E. Ronald, M. Schoenauer, and D. Snyers, editors, Proc. of Artificial Evolution '97, pages 137-144. Springer Verlag, LNCS 1363, 1997.

Cited By

View all
  • (2019)A latent space-based estimation of distribution algorithm for large-scale global optimizationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3390-823:13(4593-4615)Online publication date: 1-Jul-2019
  • (2017)An experimental analysis of a new two-stage crossover operator for multiobjective optimizationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-015-1810-621:3(721-751)Online publication date: 1-Feb-2017
  • (2013)Regularized continuous estimation of distribution algorithmsApplied Soft Computing10.1016/j.asoc.2012.11.04913:5(2412-2432)Online publication date: 1-May-2013
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
PPSN VI: Proceedings of the 6th International Conference on Parallel Problem Solving from Nature
September 2000
881 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 18 September 2000

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2019)A latent space-based estimation of distribution algorithm for large-scale global optimizationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-018-3390-823:13(4593-4615)Online publication date: 1-Jul-2019
  • (2017)An experimental analysis of a new two-stage crossover operator for multiobjective optimizationSoft Computing - A Fusion of Foundations, Methodologies and Applications10.1007/s00500-015-1810-621:3(721-751)Online publication date: 1-Feb-2017
  • (2013)Regularized continuous estimation of distribution algorithmsApplied Soft Computing10.1016/j.asoc.2012.11.04913:5(2412-2432)Online publication date: 1-May-2013
  • (2012)A review on probabilistic graphical models in evolutionary computationJournal of Heuristics10.1007/s10732-012-9208-418:5(795-819)Online publication date: 1-Oct-2012
  • (2012)Beware the parametersProceedings of the 12th international conference on Parallel Problem Solving from Nature - Volume Part II10.1007/978-3-642-32964-7_48(478-487)Online publication date: 1-Sep-2012
  • (2011)Variance scaling for EDAs revisitedProceedings of the 34th Annual German conference on Advances in artificial intelligence10.5555/2051037.2051053(169-178)Online publication date: 4-Oct-2011
  • (2010)Stochastic local search in continuous domainsProceedings of the 12th annual conference companion on Genetic and evolutionary computation10.1145/1830761.1830830(1937-1944)Online publication date: 7-Jul-2010
  • (2009)Hybrid multiobjective estimation of distribution algorithm by local linear embedding and an immune inspired algorithmProceedings of the Eleventh conference on Congress on Evolutionary Computation10.5555/1689599.1689659(463-470)Online publication date: 18-May-2009
  • (2009)BBOB-benchmarking a simple estimation of distribution algorithm with cauchy distributionProceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers10.1145/1570256.1570322(2309-2314)Online publication date: 8-Jul-2009
  • (2009)Approximating the search distribution to the selection distribution in EDAsProceedings of the 11th Annual conference on Genetic and evolutionary computation10.1145/1569901.1569965(461-468)Online publication date: 8-Jul-2009
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media