[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/3326943.3327120guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
Article
Free access

Precision and recall for time series

Published: 03 December 2018 Publication History

Abstract

Classical anomaly detection is principally concerned with point-based anomalies, those anomalies that occur at a single point in time. Yet, many real-world anomalies are range-based, meaning they occur over a period of time. Motivated by this observation, we present a new mathematical model to evaluate the accuracy of time series classification algorithms. Our model expands the well-known Precision and Recall metrics to measure ranges, while simultaneously enabling customization support for domain-specific preferences.

References

[1]
C. C. Aggarwal. Outlier Analysis. Springer, 2013.
[2]
S. Ahmad, A. Lavin, S. Purdy, and Z. Agha. Unsupervised Real-time Anomaly Detection for Streaming Data. Neurocomputing, 262:134-147, 2017.
[3]
A. AlEroud and G. Karabatis. A Contextual Anomaly Detection Approach to Discover Zero-Day Attacks. In International Conference on CyberSecurity (ICCS), pages 40-45, 2012.
[4]
S. Aminikhanghahi and D. J. Cook. A Survey of Methods for Time Series Change Point Detection. Knowledge and Information Systems, 51(2):339-367, 2017.
[5]
O. Anava, E. Hazan, and A. Zeevi. Online Time Series Prediction with Missing Data. In International Conference on Machine Learning (ICML), pages 2191-2199, 2015.
[6]
R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval: The Concepts and Technology behind Search (Second Edition). Addison-Wesley, 2011.
[7]
P. Bailis, E. Gan, S. Madden, D. Narayanan, K. Rong, and S. Suri. MacroBase: Prioritizing Attention in Fast Data. In ACM International Conference on Management of Data (SIGMOD), pages 541-556, 2017.
[8]
V. Chandola, V. Mithal, and V. Kumar. Comparative Evaluation of Anomaly Detection Techniques for Sequence Data. In IEEE International Conference on Data Mining (ICDM), pages 743-748, 2008.
[9]
V. Chandola, A. Banerjee, and V. Kumar. Anomaly Detection: A Survey. ACM Computing Surveys, 41(3): 15:1-15:58, 2009.
[10]
G. H. Chen, S. Nikolov, and D. Shah. A Latent Source Model for Nonparametric Time Series Classification. In Annual Conference on Neural Information Processing Systems (NIPS), pages 1088-1096, 2013.
[11]
H. Cheng, P. Tan, C. Potter, and S. Klooster. Detection and Characterization of Anomalies in Multivariate Time Series. In SIAM International Conference on Data Mining (SDM), pages 413-424, 2009.
[12]
D. J. Cook and N. C. Krishnan. Activity Learning: Discovering, Recognizing, and Predicting Human Behavior from Sensor Data. John Wiley & Sons, 2015.
[13]
H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, and E. Keogh. Querying and Mining of Time Series Data: Experimental Comparison of Representations and Distance Measures. Proceedings of the VLDB Endowment, 1(2):1542-1552, 2008.
[14]
S. Formenti and S. Demaria. Systemic Effects of Local Radiotherapy. The Lancet Oncology, pages 718-726, 2017.
[15]
J. Gottschlich. Paranom: A Parallel Anomaly Dataset Generator. https://arxiv.org/abs/1801.03164/, 2018.
[16]
S. Guha, N. Mishra, G. Roy, and O. Schrijvers. Robust Random Cut Forest Based Anomaly Detection on Streams. In International Conference on Machine Learning (ICML), pages 2712-2721, 2016.
[17]
M. Hermans and B. Schrauwen. Training and Analyzing Deep Recurrent Neural Networks. In Annual Conference on Neural Information Processing Systems (NIPS), pages 190-198, 2013.
[18]
S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion Detection using Sequences of System Calls. Journal of Computer Security, 6(3):151-180, 1998.
[19]
M. Hüsken and P. Stagge. Recurrent Neural Networks for Time Series Classification. Neurocomputing, 50: 223-235, 2003.
[20]
E. Keogh. UCR Time-Series Datasets. http://www.cs.ucr.edu/~eamonn/discords/, 2005.
[21]
E. Keogh, J. Lin, and A. Fu. HOT SAX: Efficiently Finding the Most Unusual Time Series Subsequence. In IEEE International Conference on Data Mining (ICDM), pages 226-233, 2005.
[22]
K. Kourou, T. P. Exarchos, K. P. Exarchos, M. V. Karamouzis, and D. I. Fotiadis. Machine Learning Applications in Cancer Prognosis and Prediction. Computational and Structural Biotechnology Journal, 13:8-17, 2015.
[23]
B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based Change Detection: Methods, Evaluation, and Applications. In ACM SIGCOMM Conference on Internet Measurement (IMC), pages 234-247, 2003.
[24]
N. Laptev, S. Amizadeh, and I. Flint. Generic and Scalable Framework for Automated Time-series Anomaly Detection. In ACM International Conference on Knowledge Discovery and Data Mining (KDD), pages 1939-1947, 2015.
[25]
A. Lavin and S. Ahmad. Evaluating Real-Time Anomaly Detection Algorithms - The Numenta Anomaly Benchmark. In IEEE International Conference on Machine Learning and Applications (ICMLA), pages 38-44, 2015.
[26]
T. J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, and S. Zdonik. Greenhouse: A Zero-Positive Machine Learning System for Time-Series Anomaly Detection. In Inaugural Conference on Systems and Machine Learning (SysML), 2018.
[27]
S. C. Li and B. Marlin. A Scalable End-to-end Gaussian Process Adapter for Irregularly Sampled Time Series Classification. In Annual Conference on Neural Information Processing Systems (NIPS), pages 1812-1820, 2016.
[28]
LinkedIn. LinkedIn's Anomaly Detection and Correlation Library. https://github.com/linkedin/luminol/, 2018.
[29]
Z. C. Lipton, D. C. Kale, C. Elkan, and R. C. Wetzel. Learning to Diagnose with LSTM Recurrent Neural Networks. In International Conference on Learning Representations (ICLR), 2016.
[30]
P. Malhotra, L. Vig, G. Shroff, and P. Agarwal. Long Short Term Memory Networks for Anomaly Detection in Time Series. In European Symposium on Artificial Neural Networks, Computational Intelligence, and Machine Learning (ESANN), pages 89-94, 2015.
[31]
P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff. LSTM-based Encoder-Decoder for Multi-sensor Anomaly Detection. ICML Anomaly Detection Workshop, 2016.
[32]
Numenta. NAB Data Corpus. https://github.com/numenta/NAB/tree/master/data/, 2017.
[33]
S. Papadimitriou, J. Sun, and C. Faloutsos. Streaming Pattern Discovery in Multiple Time-Series. In International Conference on Very Large Data Bases (VLDB), pages 697-708, 2005.
[34]
A. Patcha and J. Park. An Overview of Anomaly Detection Techniques: Existing Solutions and Latest Technological Trends. Computer Networks, 51(12):3448-3470, 2007.
[35]
N. Singh and C. Olinsky. Demystifying Numenta Anomaly Benchmark. In International Joint Conference on Neural Networks (IJCNN), pages 1570-1577, 2017.
[36]
M. Tavallaee, N. Stakhanova, and A. A. Ghorbani. Toward Credible Evaluation of Anomaly-based Intrusion Detection Methods. IEEE Transactions on Systems, Man, and Cybernetics, 40(5):516-524, 2010.
[37]
Twitter. Twitter's Open-Source Anomaly Detection R Package. https://github.com/twitter/AnomalyDetection/, 2015.
[38]
C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins, T. Galatali, C. Geyer, M. Gittleman, S. Harbaugh, M. Hebert, T. M. Howard, S. Kolski, A. Kelly, M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski, B. Salesky, Y.-W. Seo, S. Singh, J. Snider, A. Stentz, W. R. Whittaker, Z. Wolkowicki, J. Ziglar, H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble, M. Taylor, M. Darms, and D. Ferguson. Autonomous Driving in Urban Environments: Boss and the Urban Challenge. Journal of Field Robotics, 25(8):425-466, 2008.
[39]
J. A. Ward, P. Lukowicz, and H. W. Gellersen. Performance Metrics for Activity Recognition. ACM Transactions on Intelligent Systems and Technology (TIST), 2(1):6:1-6:23, 2011.
[40]
H. Yu, N. Rao, and I. S. Dhillon. Temporal Regularized Matrix Factorization for High-dimensional Time Series Prediction. In Annual Conference on Neural Information Processing Systems (NIPS), pages 847-855, 2016.
[41]
S. Zhai, Y. Cheng, W. Lu, and Z. Zhang. Deep Structured Energy Based Models for Anomaly Detection. In International Conference on Machine Learning (ICML), pages 1100-1109, 2016.

Cited By

View all
  • (2022)Experimental Comparison and Survey of Twelve Time Series Anomaly Detection AlgorithmsJournal of Artificial Intelligence Research10.1613/jair.1.1269872(849-899)Online publication date: 4-Jan-2022
  • (2022)TheseusProceedings of the VLDB Endowment10.14778/3554821.355487915:12(3702-3705)Online publication date: 1-Aug-2022
  • (2021)A demonstration of the exathlon benchmarking platform for explainable anomaly detectionProceedings of the VLDB Endowment10.14778/3476311.347635514:12(2827-2830)Online publication date: 28-Oct-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS'18: Proceedings of the 32nd International Conference on Neural Information Processing Systems
December 2018
11021 pages

Publisher

Curran Associates Inc.

Red Hook, NY, United States

Publication History

Published: 03 December 2018

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)68
  • Downloads (Last 6 weeks)8
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2022)Experimental Comparison and Survey of Twelve Time Series Anomaly Detection AlgorithmsJournal of Artificial Intelligence Research10.1613/jair.1.1269872(849-899)Online publication date: 4-Jan-2022
  • (2022)TheseusProceedings of the VLDB Endowment10.14778/3554821.355487915:12(3702-3705)Online publication date: 1-Aug-2022
  • (2021)A demonstration of the exathlon benchmarking platform for explainable anomaly detectionProceedings of the VLDB Endowment10.14778/3476311.347635514:12(2827-2830)Online publication date: 28-Oct-2021
  • (2021)ExathlonProceedings of the VLDB Endowment10.14778/3476249.347630714:11(2613-2626)Online publication date: 27-Oct-2021
  • (2021)Towards gaze-based prediction of the intent to interact in virtual realityACM Symposium on Eye Tracking Research and Applications10.1145/3448018.3458008(1-7)Online publication date: 25-May-2021
  • (2019)Visual Exploration of Time Series Anomalies with Metro-VizProceedings of the 2019 International Conference on Management of Data10.1145/3299869.3320247(1901-1904)Online publication date: 25-Jun-2019
  • (2019)Metro-VizExtended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems10.1145/3290607.3312912(1-6)Online publication date: 2-May-2019

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media