[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/3310435.3310572acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Zeros of holant problems: locations and algorithms

Published: 06 January 2019 Publication History

Abstract

We present fully polynomial-time (deterministic or randomised) approximation schemes for Holant problems, defined by a non-negative constraint function satisfying a generalised second order recurrence modulo a couple of exceptional cases. As a consequence, any non-negative Holant problem on cubic graphs has an efficient approximation algorithm unless the problem is equivalent to approximately counting perfect matchings, a central open problem in the area. This is in sharp contrast to the computational phase transition shown by 2-state spin systems on cubic graphs. Our main technique is the recently established connection between zeros of graph polynomials and approximate counting. We also use the "winding" technique to deduce the second result on cubic graphs.

References

[1]
{Asa70} Taro Asano. Theorems on the partition functions of the Heisenberg ferromagnets. J. Phys. Soc. Japan, 29:350--359, 1970. 3
[2]
{Bac18} Miriam Backens. A complete dichotomy for complex-valued Holant<sup>c</sup>. In ICALP, volume 107 of LIPIcs, pages 12:1--12:14, 2018. 1
[3]
{Bar16} Alexander I. Barvinok. Combinatorics and Complexity of Partition Functions, volume 30 of Algorithms and combinatorics. Springer, 2016. 2, 4, 5
[4]
{BGK+07} Mohsen Bayati, David Gamarnik, Dimitriy A. Katz, Chandra Nair, and Prasad Tetali. Simple deterministic approximation algorithms for counting matchings. In STOC, pages 122--127, 2007. 15
[5]
{Bul13} Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM, 60(5):34:1--34:41, 2013. 1
[6]
{CC17} Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. J. ACM, 64(3):19:1--19:39, 2017. 1, 9
[7]
{CGW16} Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the capture of vanishing signatures. SIAM J. Comput., 45(5): 1671--1728, 2016. 1, 12, 15
[8]
{CLX11} Jin-yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of Holant problems. SIAM J. Comput., 40(4):1101--1132, 2011. 1, 7
[9]
{CLX18} Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for real Holant<sup>c</sup> problems. In SODA, pages 1802--1821, 2018. 1
[10]
{DGGJ04} Martin E. Dyer, Leslie Ann Goldberg, Catherine S. Greenhill, and Mark Jerrum. The relative complexity of approximate counting problems. Algorithmica, 38(3):471{-500, 2004. 12
[11]
{DGL<sup>+</sup> 12} Jan Draisma, Dion C. Gijswijt, László Lovász, Guus Regts, and Alexander Schrijver. Characterizing partition functions of the vertex model. J. Algebra, 350:197--206, 2012. 1
[12]
{DJM17} Martin E. Dyer, Mark Jerrum, and Haiko Müller. On the switch Markov chain for perfect matchings. J. ACM, 64(2):12:1--12:33, 2017. 2
[13]
{DR13} Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint satisfaction problem. SIAM J. Comput., 42(3): 1245--1274, 2013. 1
[14]
{FLS07} Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank connectivity, and homomorphism of graphs. J. Amer. Math. Soc., 20(1):37--51, 2007. 1
[15]
{GJP03} Leslie Ann Goldberg, Mark Jerrum, and Mike Paterson. The computational complexity of two-state spin systems. Random Struct. Algorithms, 23(2):133--154, 2003. 2
[16]
{Gra02} John H. Grace. The zeros of a polynomial. Proc. Camb. Philos. Soc, 11:352--357, 1902. 3
[17]
{GŠV16} Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition function for the antiferromagnetic Ising and hard-core models. Comb. Probab. Comput., 25(4):500--559, 2016. 2
[18]
{HLZ16} Lingxiao Huang, Pinyan Lu, and Chihao Zhang. Canonical paths for MCMC: from art to science. In SODA, pages 514--527, 2016. 2, 3, 15, 16
[19]
{JS89} Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149--1178, 1989. 2
[20]
{JS93} Mark Jerrum and Alistair Sinclair. Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput., 22(5):1087--1116, 1993. 2, 9, 15
[21]
{JSV04} Mark Jerrum, Alistair Sinclair, and Eric Vigoda. A polynomial-time approximation algorithm for the permanent of a matrix with nonnegative entries. J. ACM, 51(4):671{-697, 2004. 2
[22]
{JVV86} Mark Jerrum, Leslie G. Valiant, and Vijay V. Vazirani. Random generation of combinatorial structures from a uniform distribution. Theor. Comput. Sci., 43:169--188, 1986. 16
[23]
{LLL14} Chengyu Lin, Jingcheng Liu, and Pinyan Lu. A simple FPTAS for counting edge covers. In SODA, pages 341--348, 2014. 2, 15
[24]
{LLY13} Liang Li, Pinyan Lu, and Yitong Yin. Correlation decay up to uniqueness in spin systems. In SODA, pages 67--84, 2013. 2
[25]
{LSS17} Jingcheng Liu, Alistair Sinclair, and Piyush Srivastava. The Ising partition function: Zeros and deterministic approximation. In FOCS, pages 986--997, 2017. 3
[26]
{LW18} Jiabao Lin and Hanpin Wang. The complexity of Boolean Holant problems with nonnegative weights. Siam J. Comput., 47(3):798--828, 2018. 1
[27]
{LWZ14} Pinyan Lu, Menghui Wang, and Chihao Zhang. FPTAS for weighted Fibonacci gates and its applications. In ICALP, pages 787--799, 2014. 2
[28]
{McQ13} Colin McQuillan. Approximating Holant problems by winding. CoRR, abs/1301.2880, 2013. 2, 3, 15, 16
[29]
{PR17a} Viresh Patel and Guus Regts. Deterministic polynomial-time approximation algorithms for partition functions and graph polynomials. SIAM J. Comput., 46(6):1893--1919, 2017. 2, 6, 15
[30]
{PR17b} Han Peters and Guus Regts. On a conjecture of Sokal concerning roots of the independence polynomial. CoRR, abs/1701.08049, 2017. To appear in Mich. Math. J. 3
[31]
{Rue71} David Ruelle. Extension of the Lee-Yang circle theorem. Phys. Rev. Lett., 26:303--304, 1971. 2, 3
[32]
{Rue99a} David Ruelle. Counting unbranched subgraphs. J. Algebraic Combin., 9(2): 157--160, 1999. 2, 3
[33]
{Rue99b} David Ruelle. Zeros of graph-counting polynomials. Comm. Math. Phys., 200(1):43--56, 1999. 2, 3
[34]
{Sch13} Alexander Schrijver. Characterizing partition functions of the spin model by rank growth. Indag. Math. (N.S.), 24(4):1018--1023, 2013. 1
[35]
{SS14} Allan Sly and Nike Sun. The computational hardness of counting in two-spin models on d-regular graphs. Ann. Probab., 42(6):2383--2416, 2014. 2
[36]
{SST14} Alistair Sinclair, Piyush Srivastava, and Marc Thurley. Approximation algorithms for two-state anti-ferromagnetic spin systems on bounded degree graphs. J. Stat. Phys., 155(4):666--686, 2014. 2
[37]
{ŠVW18} Daniel Štefankovič, Eric Vigoda, and John Wilmes. On counting perfect matchings in general graphs. In LATIN, pages 873--885, 2018. 2
[38]
{Sze22} Gábor Szegő. Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen. Math. Z., 13(1):28--55, 1922. 3
[39]
{Val08} Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565--1594, 2008. 1, 2, 7
[40]
{Wal22} Joseph L. Walsh. On the location of the roots of certain types of polynomials. Trans. Amer. Math. Soc., 24(3):163--180, 1922. 3

Cited By

View all
  • (2021)Lee-yang zeros and the complexity of the ferromagnetic ising model on bounded-degree graphsProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458155(1508-1519)Online publication date: 10-Jan-2021
  1. Zeros of holant problems: locations and algorithms

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SODA '19: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
    January 2019
    2993 pages

    Sponsors

    • SIAM Activity Group on Discrete Mathematics

    In-Cooperation

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 06 January 2019

    Check for updates

    Qualifiers

    • Research-article

    Conference

    SODA '19
    Sponsor:
    SODA '19: Symposium on Discrete Algorithms
    January 6 - 9, 2019
    California, San Diego

    Acceptance Rates

    Overall Acceptance Rate 411 of 1,322 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)3
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 03 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Lee-yang zeros and the complexity of the ferromagnetic ising model on bounded-degree graphsProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458155(1508-1519)Online publication date: 10-Jan-2021

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media