[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/3307441.3307464guideproceedingsArticle/Chapter ViewAbstractPublication PagesnsdiConference Proceedingsconference-collections
Article

Salsify: low-latency network video through tighter integration between a video codec and a transport protocol

Published: 09 April 2018 Publication History

Abstract

Salsify is a new architecture for real-time Internet video that tightly integrates a video codec and a network transport protocol, allowing it to respond quickly to changing network conditions and avoid provoking packet drops and queueing delays. To do this, Salsify optimizes the compressed length and transmission time of each frame, based on a current estimate of the network's capacity; in contrast, existing systems generally control longer-term metrics like frame rate or bit rate. Salsify's per-frame optimization strategy relies on a purely functional video codec, which Salsify uses to explore alternative encodings of each frame at different quality levels.
We developed a testbed for evaluating real-time video systems end-to-end with reproducible video content and network conditions. Salsify achieves lower video delay and, over variable network paths, higher visual quality than five existing systems: FaceTime, Hangouts, Skype, and WebRTC's reference implementation with and without scalable video coding.

References

[1]
ALVESTRAND, H. T. Overview: Real Time Protocols for Browser-based Applications. Internet-Draft draft-ietf-rtcweb-overview-16, Internet Engineering Task Force, Nov. 2016. Work in Progress.
[2]
CHEN, M., PONEC, M., SENGUPTA, S., LI, J., AND CHOU, P. A. Utility maximization in peer-to-peer systems. In ACM SIGMETRICS (June 2008).
[3]
CHEN, X., CHEN, M., LI, B., ZHAO, Y., WU, Y., AND LI, J. Celerity: A low-delay multi-party conferencing solution. IEEE Journal on Selected Areas in Communications 31, 9 (Sept. 2013), 155-164.
[4]
CHENG, R., WU, W., CHEN, Y., AND LOU, Y. A cloud-based transcoding framework for real-time mobile video conferencing system. In IEEE MobileCloud (Apr. 2014).
[5]
CHOU, P. A., AND MIAO, Z. Rate-distortion optimized streaming of packetized media. IEEE Transactions on Multimedia 8, 2 (April 2006), 390-404.
[6]
CICCO, L. D., CARLUCCI, G., AND MASCOLO, S. Experimental investigation of the Google congestion control for real-time flows. In ACM FhMN (Aug. 2013).
[7]
ELMOKASHFI, A., MYAKOTNYKH, E., EVANG, J. M., KVALBEIN, A., AND CICIC, T. Geography matters: Building an efficient transport network for a better video conferencing experience. In CoNEXT (Dec. 2013).
[8]
FENG, Y., LI, B., AND LI, B. Airlift: Video conferencing as a cloud service. In IEEE ICNP (Feb. 2012).
[9]
FOULADI, S., WAHBY, R. S., SHACKLETT, B., BALASUBRAMANIAM, K. V., ZENG, W., BHALERAO, R., SIVARAMAN, A., PORTER, G., AND WINSTEIN, K. Encoding, fast and slow: Low-latency video processing using thousands of tiny threads. In 14th USENIX Symposium on Networked Systems Design and Implementation (NSDI'17) (2017), USENIX Association, pp. 363-376.
[10]
FREDERICK, R. Experiences with real-time software video compression. In Proceedings of the Sixth International Workshop on Packet Video (1994).
[11]
FUND, F., WANG, C., LIU, Y., KORAKIS, T., ZINK, M., AND PANWAR, S. S. Performance of DASH and WebRTC video services for mobile users. In IEEE PV (Dec. 2013).
[12]
GANJAM, A., JIANG, J., LIU, X., SEKAR, V., SIDDIQUI, F., STOICA, I., ZHAN, J., AND ZHANG, H. C3: Internet-scale control plane for video quality optimization. In NSDI (May 2015).
[13]
GETTYS, J., AND NICHOLS, K. Bufferbloat: Dark buffers in the Internet. Queue 9, 11 (Nov. 2011), 40:40-40:54.
[14]
GRANGE, A., DE RIVAZ, P., AND HUNT, J. VP9 Bitstream & Decoding Process Specification version 0.6, March 2016. http://www.webmproject.org/vp9/.
[15]
HAJIESMAILI, M. H., MAK, L., WANG, Z., WU, C., CHEN, M., AND KHONSARI, A. Cost-effective low-delay cloud video conferencing. In IEEE ICDCS (June 2015).
[16]
HERMANNS, N., AND SARKER, Z. Congestion control issues in real-time communication--"Sprout" an example. Internet Congestion Control Research Group. https://datatracker.ietf.org/meeting/88/materials/slides-88-iccrg-3.
[17]
HOLMER, S., LUNDIN, H., CARLUCCI, G., CICCO, L. D., AND MASCOLO, S. A Google congestion control algorithm for real-time communication, 2015. draft-alvestrand-rmcat-congestion-03.
[18]
JAIN, M., AND DOVROLIS, C. End-to-end available bandwidth: Measurement methodology, dynamics, and relation with TCP throughput. In Proceedings of the 2002 Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications (2002), SIGCOMM '02, ACM, pp. 295-308.
[19]
JAKUBCZAK, S., AND KATABI, D. A cross-layer design for scalable mobile video. In MobiComm (Sept. 2011).
[20]
JIANG, J., DAS, R., ANANTHANARAYANAN, G., CHOU, P. A., PADMANABHAN, V. N., SEKAR, V., DOMINIQUE, E., GOLISZEWSKI, M., KUKOLECA, D., VAFIN, R., AND ZHANG, H. VIA: Improving internet telephony call quality using predictive relay selection. In SIGCOMM (Aug. 2016).
[21]
KESHAV, S. A control-theoretic approach to flow control. In Proceedings of the Conference on Communications Architecture & Protocols (1991), SIGCOMM '91, ACM, pp. 3-15.
[22]
LI, J., CHOU, P. A., AND ZHANG, C. Mutualcast: An efficient mechanism for content distribution in a peer-to-peer (P2P) network. Tech. Rep. MSR-TR-2004-98, Microsoft Research, 2004.
[23]
LIANG, C., ZHAO, M., AND LIU, Y. Optimal bandwidth sharing in multiswarm multiparty P2P video-conferencing systems. IEEE/ACM Trans. Networking 19, 6 (Dec. 2011), 1704-1716.
[24]
LIU, X., DOBRIAN, F., MILNER, H., JIANG, J., SEKAR, V., STOICA, I., AND ZHANG, H. A case for a coordinated Internet video control plane. In SIGCOMM (Aug. 2012).
[25]
LUMIAHO, L., AND NAGY, M., Oct. 2015. Error Resilience Mechanisms for WebRTC Video Communications http://www.callstats.io/2015/10/30/error-resilience-mechanisms-webrtc-video/.
[26]
MCCANNE, S., AND JACOBSON, V. Vic: A flexible framework for packet video. In Proceedings of the Third ACM International Conference on Multimedia (1995), MULTIMEDIA '95, ACM, pp. 511-522.
[27]
NETRAVALI, R., SIVARAMAN, A., DAS, S., GOYAL, A., WINSTEIN, K., MICKENS, J., AND BALAKRISHNAN, H. Mahimahi: Accurate record-and-replay for HTTP. In USENIX Annual Technical Conference (2015), pp. 417- 429.
[28]
OTT, J., AND WENGER, D. S. Extended RTP Profile for Real-time Transport Control Protocol (RTCP)-Based Feedback (RTP/AVPF). RFC 4585, July 2006.
[29]
PONEC, M., SENGUPTA, S., CHIN, M., LI, J., AND CHOU, P. A. Multi-rate peer-to-peer video conferencing: A distributed approach using scalable coding. In IEEE ICME (June 2009).
[30]
SEN, S., GILANI, S., SRINATH, S., SCHMITT, S., AND BANERJEE, S. Design and implementation of an "approximate" communication system for wireless media applications. In Proceedings of the ACM SIGCOMM 2010 Conference (2010), SIGCOMM '10, ACM, pp. 15-26.
[31]
SEUNG, Y., LENG, Q., DONG, W., QIU, L., AND ZHANG, Y. Randomized routing in multi-party internet video conferencing. In IEEE IPCCC (Dec. 2014).
[32]
SULLIVAN, G. J., OHM, J.-R., HAN, W.-J., AND WIEGAND, T. Overview of the high efficiency video coding (HEVC) standard. IEEE Trans. Cir. and Sys. for Video Technol. 22, 12 (Dec. 2012), 1649-1668.
[33]
SWETT, I. QUIC FEC v1. https://docs.google.com/document/d/1Hg1SaLEl6T4rEU9j-isovCo8VEjjnuCPTcLNJewj7Nk.
[34]
WANG, Z., BOVIK, A. C., SHEIKH, H. R., AND SIMONCELLI, E. P. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing 13, 4 (2004), 600-612.
[35]
WEBRTC.ORG. WebRTC Native Code. https://webrtc.org/native-code.
[36]
WILKINS, P., XU, Y., QUILLIO, L., BANKOSKI, J., SALONEN, J., AND KOLESZAR, J. VP8 Data Format and Decoding Guide. RFC 6386, Oct. 2015.
[37]
WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: A State-of-the-Art Good Old-Fashioned Mobile Shell. In login: (37, 4, August 2012).
[38]
WINSTEIN, K., AND BALAKRISHNAN, H. Mosh: An interactive remote shell for mobile clients. In 2012 USENIX Annual Technical Conference (USENIX ATC 12) (2012), USENIX. Available at https://mosh.org., pp. 177-182.
[39]
WINSTEIN, K., SIVARAMAN, A., AND BALAKRISHNAN, H. Stochastic forecasts achieve high throughput and low delay over cellular networks. In 10th USENIX Symposium on Networked Systems Design and Implementation (NSDI '13) (2013), USENIX, pp. 459-471.
[40]
WU, Y., WU, C., LI, B., AND LAU, F. C. M. vSkyConf: Cloud-assisted multi-party mobile video conferencing. In ACM MCC (Aug. 2013).
[41]
XU, Y., YU, C., LI, J., AND LIU, Y. Video telephony for end-consumers: Measurement study of Google+, iChat, and Skype. In IMC (Nov. 2012).
[42]
YAN, F. Y., MA, J., HILL, G., RAGHAVAN, D., WAHBY, R. S., LEVIS, P., AND WINSTEIN, K. Pantheon: the training ground for Internet congestion-control research. Measurement at http://pantheon.stanford.edu/result/1622/.
[43]
YAP, K.-K., HUANG, T.-Y., YIAKOUMIS, Y., MCKEOWN, N., AND KATTI, S. Late-binding: how to lose fewer packets during handoff. In Proceedings of the 2013 Workshop on Cellular Networks: Operations, Challenges, and Future Design (2013), ACM, pp. 1-6.
[44]
YIN, X., JINDAL, A., SEKAR, V., AND SINOPOLI, B. A control-theoretic approach for dynamic adaptive video streaming over HTTP. In SIGCOMM (Aug. 2015).
[45]
ZHAI, F., AND KATSAGGELOS, A. Joint Source-Channel Video Transmission. Morgan & Claypool, 2007.
[46]
ZHANG, X., XU, Y., HU, H., LIU, Y., GUO, Z., AND WANG, Y. Modeling and analysis of Skype video calls: Rate control and video quality. IEEE Trans. Multimedia 15, 6 (Oct. 2013), 1446-1457.

Cited By

View all
  • (2024)GeminoProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691857(569-590)Online publication date: 16-Apr-2024
  • (2024)GRACEProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691854(509-531)Online publication date: 16-Apr-2024
  • (2024)Zenith: Real-time Identification of DASH Encrypted Video Traffic with DistortionProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680695(7200-7209)Online publication date: 28-Oct-2024
  • Show More Cited By
  1. Salsify: low-latency network video through tighter integration between a video codec and a transport protocol

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide Proceedings
    NSDI'18: Proceedings of the 15th USENIX Conference on Networked Systems Design and Implementation
    April 2018
    623 pages
    ISBN:9781931971430

    Sponsors

    • NetApp
    • Google Inc.
    • NSF
    • Microsoft: Microsoft

    Publisher

    USENIX Association

    United States

    Publication History

    Published: 09 April 2018

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 12 Jan 2025

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)GeminoProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691857(569-590)Online publication date: 16-Apr-2024
    • (2024)GRACEProceedings of the 21st USENIX Symposium on Networked Systems Design and Implementation10.5555/3691825.3691854(509-531)Online publication date: 16-Apr-2024
    • (2024)Zenith: Real-time Identification of DASH Encrypted Video Traffic with DistortionProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680695(7200-7209)Online publication date: 28-Oct-2024
    • (2023)Estimating WebRTC Video QoE Metrics Without Using Application HeadersProceedings of the 2023 ACM on Internet Measurement Conference10.1145/3618257.3624828(485-500)Online publication date: 24-Oct-2023
    • (2023)AeroTrajProceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies10.1145/36109117:3(1-28)Online publication date: 27-Sep-2023
    • (2023)Octopus: In-Network Content Adaptation to Control Congestion on 5G LinksProceedings of the Eighth ACM/IEEE Symposium on Edge Computing10.1145/3583740.3628438(199-214)Online publication date: 6-Dec-2023
    • (2023)Mamba: Bringing Multi-Dimensional ABR to WebRTCProceedings of the 31st ACM International Conference on Multimedia10.1145/3581783.3611915(9262-9270)Online publication date: 26-Oct-2023
    • (2022)Automating network heuristic design and analysisProceedings of the 21st ACM Workshop on Hot Topics in Networks10.1145/3563766.3564085(8-16)Online publication date: 14-Nov-2022
    • (2021)Progressive compressed recordsProceedings of the VLDB Endowment10.14778/3476249.347630814:11(2627-2641)Online publication date: 27-Oct-2021
    • (2021)Deadline and Priority-aware Congestion Control for Delay-sensitive Multimedia StreamingProceedings of the 29th ACM International Conference on Multimedia10.1145/3474085.3479208(4740-4744)Online publication date: 17-Oct-2021
    • Show More Cited By

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media