[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Voting techniques for expert search

Published: 01 September 2008 Publication History

Abstract

In an expert search task, the users' need is to identify people who have relevant expertise to a topic of interest. An expert search system predicts and ranks the expertise of a set of candidate persons with respect to the users' query. In this paper, we propose a novel approach for predicting and ranking candidate expertise with respect to a query, called the Voting Model for Expert Search. In the Voting Model, we see the problem of ranking experts as a voting problem. We model the voting problem using 12 various voting techniques, which are inspired from the data fusion field. We investigate the effectiveness of the Voting Model and the associated voting techniques across a range of document weighting models, in the context of the TREC 2005 and TREC 2006 Enterprise tracks. The evaluation results show that the voting paradigm is very effective, without using any query or collection-specific heuristics. Moreover, we show that improving the quality of the underlying document representation can significantly improve the retrieval performance of the voting techniques on an expert search task. In particular, we demonstrate that applying field-based weighting models improves the ranking of candidates. Finally, we demonstrate that the relative performance of the voting techniques for the proposed approach is stable on a given task regardless of the used weighting models, suggesting that some of the proposed voting techniques will always perform better than other voting techniques.

References

[1]
Amati G (2003) Probabilistic models for information retrieval based on divergence from randomness. PhD thesis, University of Glasgow, Glasgow, UK
[2]
Amati G (2006) Frequentist and Bayesian approach to information retrieval. In: Lalmas M, MacFarlane A, Rüger S et al (eds) Proceedings of ECIR 2006. Lecture Notes in Computer Science, vol 3936. Springer, London, pp 13---24.
[3]
Balog K, de Rijke M (2006) Finding experts and their details in e-mail corpora. In: Carr L, De Roure D, Iyengar A et al (eds). Proceedings of WWW 2006. ACM Press, Edinburgh, pp. 1035---1036
[4]
Balog K, Azzopardi L, de Rijke M (2006) Formal models for expert finding in enterprise corpora. In: Efthimiadis E, Dumais S, Hawking D et al (eds) Proceedings of ACM SIGIR 2006. ACM Press, Seattle, pp 43---50.
[5]
Aslam JA, Montague M (2001) Models for metasearch. In: oft WB, Harper D, Kraft D et al. (eds). Proceedings of ACM SIGIR 2001. ACM Press, New Orleans, pp 276---284
[6]
Campbell CS, Maglio PP, Cozzi A, et al (2003) Expertise identification using email communications. In Proceedings of ACM CIKM 2003. ACM Press, New Orleans, pp 528---531.
[7]
Cao Y, Li H, Liu J et al (2005) Research on expert search at enterprise track of TREC 2005. In: Proceedings of TREC-2005. NIST, Gaithersburg
[8]
Craswell N, de Vries AP, Soboroff I (2005) Overview of the TREC-2005 enterprise track. In: Proceedings of TREC-2005. NIST, Gaithersburg
[9]
aswell N, Hawking D, Vercoustre A-M et al (2001) Panoptic expert: searching for experts not just for documents. In: Ausweb Poster Proceedings, Queensland, Australia
[10]
Dom B, Eiron I and Cozzi A (2003). Graph-based ranking algorithms for e-mail expertise analysis. In: Zaki, MJ and Aggarwal, C (eds) Proceedings of ACM SIGMOD DMKD Workshop 2003., pp 42---48. ACM Press, San Diego
[11]
Dumais ST, Nielsen J (1992) Automating the assignment of submitted manusipts to reviewers. In: Belkin NJ, Ingwersen P, Pejtersen AM (eds) Proceedings of ACM SIGIR 1992, Copenhagen, Denmark, pp 233---244.
[12]
Fang H, Zhai C (2007) Probabilistic models for expert finding. In: Amati G, Carpineto C, Romano G (eds) Proceedings of ECIR 2007. Lecture Notes in Computer Science vol 4425. Springer, Rome, pp 418-430.
[13]
Fox EA, Shaw JA (1994) Combination of multiple searches. In: Proceedings of TREC-2. NIST, Gaithersburg
[14]
Hertzum M and Pejtersen AM (2000). The information-seeking practises of engineers: searching for documents as well as for people. Inf Process Manage 36(5): 761---778
[15]
Hiemstra D (2001) Using language models for information retrieval. PhD thesis, University of Twente, The Netherlands
[16]
Kendall MG (1955). Rank correlation methods, 2nd edn. Charles Griffin, London
[17]
Kleinberg JM (1999). Authoritative sources in a hyperlinked environment. J ACM 46(5): 604---632
[18]
Lee JH (1997) Analyses of multiple evidence combination. In: Belkin NJ, Willett P, Narasimhalu AD (eds) Proceedings of ACM SIGIR 1997, ACM Press, Philadelphia, pp 267---276.
[19]
Lioma C, Macdonald C, Plachouras V, et al (2007) University of Glasgow at TREC 2006: experiments in terabyte and enterprise tracks with terrier. In: Proceedings of TREC 2006. NIST, Gaithersburg
[20]
Liu X, oft WB, Koll M (2005) Finding experts in community-based question-answering services. In: Schek H-J, Fuhr N, Chowdhury A (eds) Proceedings of ACM CIKM 2005, ACM Press, Bremen, pp 315---316.
[21]
Macdonald C, He B, Plachouras V, et al (2006) University of Glasgow at TREC 2005: experiments in terabyte and enterprise tracks with terrier. In: Proceedings of TREC-2005. NIST, Gaithersburg
[22]
Macdonald C, Ounis I (2006) Searching for expertise using the terrier platform. In: Efthimiadis E, Dumais S, Hawking D et al (eds) Proceedings of ACM SIGIR 2006. ACM Press, Seattle WA, pp 732.
[23]
Macdonald C, Ounis I (2007) Using relevance feedback in expert search. In: Amati G, Carpineto C, Romano G (eds) Proceedings of ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Rome, pp 418-430.
[24]
Macdonald C, Plachouras V, He B, Lioma C, Ounis I (2006) University of Glasgow at WebCLEF 2005: experiments in per-field normalisation and language specific stemming. In: Peters C, Gey FC, Gonzalo et al (eds) Proceedings of CLEF workshop 2005. Lecture Notes in Computer Science, vol 4022. Springer, Vienna, Austria, pp 898-907.
[25]
Manmatha R, Rath T, Feng F (2001) Modelling score distributions for combining the outputs of search engines. In: oft WB, Harper D, Kraft D et al (eds) Proceedings of ACM SIGIR 2001. ACM Press, New Orleans LA, pp 267---275.
[26]
Maybury M, D'Amore R and House D (2001). Expert finding for collaborative virtual environments. Commun ACM 44(12): 55---56
[27]
McLean A, Vercoustre A-M, Wu M (2003) Enterprise PeopleFinder: combining evidence from Web pages and corporate data. In: Hawking D, Bruza P, Thom J (eds) Proceedings of the 8th Australasian Document Computing Symposium (ADCS'03)
[28]
Montague M, Aslam JA (2001) Metasearch consistency. In: oft WB, Harper D, Kraft D et al (eds) Proceedings of ACM SIGIR 2001. ACM Press, New Orleans, pp 386---387.
[29]
Montague M, Aslam JA (2001) Relevance score normalization for metasearch. In: Proceedings of ACM CIKM 2001. ACM Press, Atlanta, pp 427---433.
[30]
Montague M, Aslam JA (2002) Condorcet fusion for improved retrieval. In Proceedings of ACM CIKM 2002. ACM Press, McLean, pp 538---548.
[31]
Ogilvie P, Callan J (2003) Combining document representations for known-item search. In: Clarke C, Cormack G, Callan J et al (eds) Proceedings of ACM SIGIR 2003. Toronto, Canada, pp 143---150.
[32]
Ounis I, Amati G, Plachouras V et al (2005) Terrier Information Retrieval Platform. In: Losada D, Fernández-Luna JM (eds) Proceedings of ECIR 2005. Lecture Notes in Computer Science, vol 3408. Springer, Santiago de Compostela, pp 517---519.
[33]
Ounis I, Amati G and Plachouras V (2006). Terrier: a high performance and scalable information retrieval platform. In: Beigbeder, M, Buntime, W, and Gen Yee, W (eds) Proceedings of the OSIR Workshop 2006, pp 18---25. ACM Press, Seattle
[34]
Petkova D, oft WB (2006) Hierarchical language models for expert finding in enterprise corpora. In: Lu CT, Bourbakis NG (eds) Proceedings of ICTAI 2006. IEEE, Washington, DC, pp 599---608.
[35]
Plachouras V, He B, Ounis I (2004) University of Glasgow at TREC2004: experiments in Web, robust and terabyte tracks with terrier. In: Proceedings of TREC-2004. NIST, Gaithersburg
[36]
Plachouras V, Ounis I (2007) Multinomial randomness models for retrieval with document fields. In: Amati G, Carpineto C, Romano G (eds) Proceedings of ECIR 2007. Lecture Notes in Computer Science, vol 4425. Springer, Rome, pp 28-39.
[37]
Robertson SE, Zaragoza H, Taylor M (2004) Simple BM25 extension to multiple weighted Fields. In: Gravano L, Zhai CX, Herzog O (eds) Proceedings of ACM CIKM 2004. ACM Press, Washington, DC, pp 42---49.
[38]
Robertson SE, Walker S, Hancock-Beaulieu M, et al (1995) Okapi at TREC-4. In: Proceedings of TREC-4. NIST, Gaithersburg
[39]
Robertson SE, Walker S, Hancock-Beaulieu M, et al (1992) Okapi at TREC. In: Proceedings of TREC-1. NIST, Gaithersburg
[40]
Savoy J, Calvé AL, Vrajitoru D (1997) Report on the TREC-5 experiment: data fusion and collection fusion. In: Proceedings of TREC-5. NIST, Gaithersburg, MD
[41]
Shaw JA, Fox EA (1994) Combination of multiple searches. In: Proceedings of TREC-3. NIST Gaithersburg
[42]
Sihn W, Heeren F (2001) Xpertfinder--expert finding within specified subject areas through analysis of E-mail communication. In: Proceedings of Euromedia 2001, Valencia, Spain, pp 279---283
[43]
Soboroff I, de Vries AP, aswell N (2006) Overview of the TREC-2006 enterprise track. In: Proceedings of TREC-2006. NIST, Gaithersburg
[44]
Wang J, Chen Z, Tao L, Ma WY, Wenyin L (2002) Ranking user's relevance to a topic through link analysis on web logs. In: Proceedings of WIDM 2002 workshop, McLean, VA, pp 49---54
[45]
Yimam-Seid D and Kobsa A (2003). Expert finding systems for organizations: problem and domain analysis and the DEMOIR approach. J Organizat Comput and Elec Commerce 13(1): 1---24
[46]
Zaragoza H, aswell N, Taylor M, et al (2004) Miosoft Cambridge at TREC-13: Web and HARD tracks. In: Proceedings of TREC-2004. NIST, Gaithersburg
[47]
Zhang M, Song R, Lin C, et al (2002) Expansion-based technologies in finding relevant and new information: THU TREC2002: Novelty Track experiments. In: Proceedings of TREC-2002. NIST, Gaithersburg

Cited By

View all
  • (2019)Integrating expert profile, reputation and link analysis for expert finding in question-answering websitesInformation Processing and Management: an International Journal10.1016/j.ipm.2012.07.00249:1(312-329)Online publication date: 22-Nov-2019
  • (2018)Learning to rank academic experts in the DBLP datasetExpert Systems: The Journal of Knowledge Engineering10.1111/exsy.1206232:4(477-493)Online publication date: 12-Dec-2018
  • (2018)A formal approach for the specification and verification of a Trustworthy Human Resource Discovery mechanism in the Expert CloudExpert Systems with Applications: An International Journal10.1016/j.eswa.2015.03.03542:15(6112-6131)Online publication date: 29-Dec-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Knowledge and Information Systems
Knowledge and Information Systems  Volume 16, Issue 3
September 2008
130 pages

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 01 September 2008

Author Tags

  1. Data fusion
  2. Expert finding
  3. Expert search
  4. Expertise modelling
  5. Information retrieval
  6. Ranking
  7. Voting

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Integrating expert profile, reputation and link analysis for expert finding in question-answering websitesInformation Processing and Management: an International Journal10.1016/j.ipm.2012.07.00249:1(312-329)Online publication date: 22-Nov-2019
  • (2018)Learning to rank academic experts in the DBLP datasetExpert Systems: The Journal of Knowledge Engineering10.1111/exsy.1206232:4(477-493)Online publication date: 12-Dec-2018
  • (2018)A formal approach for the specification and verification of a Trustworthy Human Resource Discovery mechanism in the Expert CloudExpert Systems with Applications: An International Journal10.1016/j.eswa.2015.03.03542:15(6112-6131)Online publication date: 29-Dec-2018
  • (2018)Integration of scientific and social networksWorld Wide Web10.1007/s11280-013-0229-117:5(1051-1079)Online publication date: 25-Dec-2018
  • (2018)Interpreting Fine-Grained Categories from Natural Language Queries of Entity SearchDatabase Systems for Advanced Applications10.1007/978-3-319-91452-7_55(861-877)Online publication date: 21-May-2018
  • (2017)On image search result aggregationPattern Analysis & Applications10.1007/s10044-017-0596-920:3(865-870)Online publication date: 1-Aug-2017
  • (2016)A personalized information recommendation system for R&D project opportunity finding in big data contextsJournal of Network and Computer Applications10.1016/j.jnca.2015.01.00359:C(362-369)Online publication date: 1-Jan-2016
  • (2016)Enhancing information retrieval through concept-based language modeling and semantic smoothingJournal of the Association for Information Science and Technology10.1002/asi.2355367:12(2909-2927)Online publication date: 1-Dec-2016
  • (2014)Combining compound and single terms under language model frameworkKnowledge and Information Systems10.1007/s10115-013-0618-x39:2(329-349)Online publication date: 1-May-2014
  • (2013)Quality biased thread retrieval using the voting modelProceedings of the 18th Australasian Document Computing Symposium10.1145/2537734.2537752(97-100)Online publication date: 5-Dec-2013
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media