[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/3009055.3009113guideproceedingsArticle/Chapter ViewAbstractPublication PagesnipsConference Proceedingsconference-collections
Article

Global optimisation of neural network models via sequential sampling

Published: 01 December 1998 Publication History

Abstract

We propose a novel strategy for training neural networks using sequential sampling-importance resampling algorithms. This global optimisation strategy allows us to learn the probability distribution of the network weights in a sequential framework. It is well suited to applications involving on-line, nonlinear, non-Gaussian or non-stationary signal processing.

References

[1]
Carpenter, J., Clifford, P. and Fearnhead, P. (1997). An improved particle filter for non-linear problems, Technical report, Department of Statistics, Oxford University, England. Available at http://www.stats.ox.ac.uk/~clifford/index.htm.
[2]
de Freitas, J. F. G., Niranjan, M. and Gee, A. H. (1997). Hierarchichal Bayesian-Kalman models for regularisation and ARD in sequential learning, Technical Report CUED/F-INFENG/TR 307, Cambridge University, http://svrwww.eng.cam.ac.uk/~jfgf.
[3]
de Freitas, J. F. G., Niranjan, M. and Gee, A. H. (1998). Regularisation in sequential learning algorithms, in M. I. Jordan, M. J. Kearns and S. A. Solla (eds), Advances in Neural Information Processing Systems, Vol. 10, MIT Press.
[4]
de Freitas, J. F. G., Niranjan, M., Gee, A. H. and Doucet, A. (1998). Sequential Monte Carlo methods for optimisation of neural network models, Technical Report CUED/F-INFENG/TR 328, Cambridge University, http://svrwww.eng.cam.ac.uk/~jfgf.
[5]
Doucet, A. (1998). On sequential simulation-based methods for Bayesian filtering, Technical Report CUED/F-INFENG/TR 310, Cambridge University. Available at http://www.stats.bris.ac.uk:81/MCMC/pages/list.html.
[6]
Gordon, N. J., Salmond, D. J. and Smith, A. F. M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEE Proceedings-F 140(2): 107-113.
[7]
Pitt, M. K. and Shephard, N. (1997). Filtering via simulation: Auxiliary particle filters, Technical report, Department of Statistics, Imperial College of London, England. Available at http://www.nuff.ox.ac.uk/economics/papers.
[8]
Singhal, S. and Wu, L. (1988). Training multilayer perceptrons with the extended Kalman algorithm, in D. S. Touretzky (ed.), Advances in Neural Information Processing Systems, Vol. 1, San Mateo, CA, pp. 133-140.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
NIPS'98: Proceedings of the 12th International Conference on Neural Information Processing Systems
December 1998
1080 pages

Publisher

MIT Press

Cambridge, MA, United States

Publication History

Published: 01 December 1998

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 26 Jan 2025

Other Metrics

Citations

View Options

View options

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media