[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/2075619.2075647guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Stability of inferring gene regulatory structure with dynamic Bayesian networks

Published: 02 November 2011 Publication History

Abstract

Though a plethora of techniques have been used to build gene regulatory networks (GRN) from time-series gene expression data, stabilities of such techniques have not been studied. This paper investigates the stability of GRN built using dynamic Bayesian networks (DBN) by synthetically generating gene expression time-series. Assuming scale-free topologies, sample datasets are drawn from DBN to evaluate the stability of estimating the structure of GRN. Our experiments indicate although high accuracy can be achieved with equal number of time points to the number of genes in the network, the presence of large numbers of false positives and false negatives deteriorate the stability of building GRN. The stability could be improved by gathering gene expression at more time points. Interestingly, large networks required less number of time points (normalized to the size of the network) than small networks to achieve the same level stability.

References

[1]
Li, P., Zhang, C., Perkins, E.J., Gong, P., Deng, Y.: Comparison of probabilistic boolean network and dynamic bayesian network approaches for inferring gene regulatorynetworks. BMC Bioinformatics 8, S13-S20 (2007).
[2]
Akutsu, T., Miyano, S., Kuhara, S.: Algorithms for identifying boolean networks and related biological networks based on matrix multiplication and fingerprint function. Journal of Computational Biology 7(3-4), 331-343 (2000).
[3]
Liu, B., Thiagarajan, P., Hsu, D.: Probabilistic approximations of signaling pathway dynamics. In: Computational Methods in Systems Biology, pp. 251-265 (2009).
[4]
Gebert, J., Motameny, S., Faigle, U., Forst, C.V., Schrader, R.: Identifying genes of gene regulatory networks using formal concept analysis. Journal of Computational Biology 15(2), 185-194 (2008).
[5]
Friedman, N., Linial, M., Nachman, I., Pe'er, D.: Using bayesian networks to analyze expression data. Journal of Computational Biology 7(3-4), 601-620 (2000).
[6]
Imoto, S., Kim, S., Goto, T., Miyano, S., Aburatani, S., Tashiro, K., Kuhara, S.: Bayesian network and nonparametric heteroscedastic regression for nonlinear modeling of genetic network. J. Bioinform. Comput. Biol. 1(2), 231-252 (2003).
[7]
Nariai, N., Kim, S., Imoto, S., Miyano, S.: Using protein-protein interactions for refining gene networks estimated from microarray data by bayesian networks. In: Pac. Symp. Biocomput., pp. 336-347 (2004).
[8]
Ota, K., Yamada, T., Yamanishi, Y., Goto, S., Kanehisa, M.: Comprehensive analysis of delay in transcriptional regulation using expression profiles. Genome Informatics 14, 302-303 (2003).
[9]
Perrin, E.D., Liva, R., Mazurie, A., Bottani, S., Mallet, J., dAlche-Buc, F.: Gene network inference using dynamic bayesian networks. Bioinformatics 12(2), 138-148 (2003).
[10]
Husmeier, D.: Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks. Bioinformatics 19(17), 2271-2282 (2003).
[11]
Friedman, N., Murphy, K., Russell, S.: Learning the structure of dynamic probabilistic networks. In: Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI 1998), pp. 139-140 (1998).
[12]
Albert-Laszlo, B., Reka, A.: Emergence of scaling in random networks. Science 286(5439), 509 (1999).

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
PRIB'11: Proceedings of the 6th IAPR international conference on Pattern recognition in bioinformatics
November 2011
344 pages
ISBN:9783642248542
  • Editors:
  • Marco Loog,
  • Marcel J. T. Reinders,
  • Dick De Ridder,
  • Lodewyk Wessels

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 02 November 2011

Author Tags

  1. Markov chain Monte Carlo simulation
  2. dynamic Bayesian networks
  3. gene regulatory networks
  4. scale-free networks
  5. stability

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Jan 2025

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media