[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/2026143.2026147guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Evolutionary multi-objective optimization: basic concepts and some applications in pattern recognition

Published: 29 June 2011 Publication History

Abstract

This paper provides a brief introduction to the so-called multi-objective evolutionary algorithms, which are bio-inspired metaheuristics designed to deal with problems having two or more (normally conflicting) objectives. First, we provide some basic concepts related to multi-objective optimization and a brief review of approaches available in the specialized literature. Then, we provide a short review of applications of multi-objective evolutionary algorithms in pattern recognition. In the final part of the paper, we provide some possible paths for future research in this area, which are promising, from the author's perspective.

References

[1]
Miettinen, K.M.: Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston (1999)
[2]
Blum, C., Roli, A.: Metaheuristics in combinatorial optimization: Overview and conceptual comparison. ACM Computing Surveys 35(3), 268-308 (2003)
[3]
Coello Coello, C.A., Lamont, G.B., Van Veldhuizen, D.A.: Evolutionary Algorithms for Solving Multi-Objective Problems, 2nd edn. Springer, New York (2007), ISBN 978-0-387-33254-3
[4]
Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, Reading (1989)
[5]
Schaffer, J.D.: Multiple Objective Optimization with Vector Evaluated Genetic Algorithms. In: Genetic Algorithms and their Applications: Proceedings of the First International Conference on Genetic Algorithms, pp. 93-100. Lawrence Erlbaum, Mahwah (1985)
[6]
Fogel, D.B.: Evolutionary Computation. Toward a New Philosophy of Machine Intelligence. The Institute of Electrical and Electronic Engineers, New York (1995)
[7]
Holland, J.H.: Concerning efficient adaptive systems. In: Yovits, M.C., Jacobi, G.T., Goldstein, G.D. (eds.) Self-Organizing Systems, pp. 215-230. Spartan Books, Washington, DC (1962)
[8]
Schwefel, H.P.: Kybernetische evolution als strategie der experimentellen forschung in der strömungstechnik. Dipl.-Ing. thesis (1965) (in German)
[9]
Fogel, L.J.: Artificial Intelligence through Simulated Evolution. John Wiley, New York (1966)
[10]
Hajela, P., Lin, C.Y.: Genetic search strategies in multicriterion optimal design. Structural Optimization 4, 99-107 (1992)
[11]
Srinivas, N., Deb, K.: Multiobjective Optimization Using Nondominated Sorting in Genetic Algorithms. Evolutionary Computation 2(3), 221-248 (1994)
[12]
Fonseca, C.M., Fleming, P.J.: Genetic Algorithms for Multiobjective Optimization: Formulation, Discussion and Generalization. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign, San Mateo, California, pp. 416-423. Morgan Kauffman Publishers, San Francisco (1993)
[13]
Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: Multiobjective selection based on dominated hypervolume. European Journal of Operational Research 181(3), 1653-1669 (2007)
[14]
Goldberg, D.E., Richardson, J.: Genetic algorithm with sharing for multimodal function optimization. In: Grefenstette, J.J. (ed.) Genetic Algorithms and Their Applications: Proceedings of the Second International Conference on Genetic Algorithms, pp. 41-49. Lawrence Erlbaum, Hillsdale (1987)
[15]
Deb, K., Goldberg, D.E.: An Investigation of Niche and Species Formation in Genetic Function Optimization. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, George Mason University, San Mateo, California, June 1989, pp. 42-50. Morgan Kaufmann, San Francisco (1989)
[16]
Toscano Pulido, G., Coello Coello, C.A.: Using clustering techniques to improve the performance of a multi-objective particle swarm optimizer. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 225-237. Springer, Heidelberg (2004)
[17]
Zitzler, E., Deb, K., Thiele, L.: Comparison of Multiobjective Evolutionary Algorithms on Test Functions of Different Difficulty. In: Wu, A.S. (ed.) Proceedings of the 1999 Genetic and Evolutionary Computation Conference, Workshop Program, Orlando, Florida, July 1999, pp. 121-122 (1999)
[18]
Knowles, J., Corne, D.: Properties of an Adaptive Archiving Algorithm for Storing Nondominated Vectors. IEEE Transactions on Evolutionary Computation 7(2), 100-116 (2003)
[19]
Kita, H., Yabumoto, Y., Mori, N., Nishikawa, Y.: Multi-Objective Optimization by Means of the Thermodynamical Genetic Algorithm. In: Ebeling, W., Rechenberg, I., Voigt, H.-M., Schwefel, H.-P. (eds.) PPSN 1996. LNCS, vol. 1141, pp. 504-512. Springer, Heidelberg (1996)
[20]
Cui, X., Li, M., Fang, T.: Study of Population Diversity of Multiobjective Evolutionary Algorithm Based on Immune and Entropy Principles. In: Proceedings of the Congress on Evolutionary Computation 2001 (CEC 2001), May 2001, vol. 2, pp. 1316-1321. IEEE Service Center, Piscataway (2001)
[21]
Knowles, J.D., Corne, D.W.: Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy. Evolutionary Computation 8(2), 149-172 (2000)
[22]
Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. In: Giannakoglou, K., Tsahalis, D., Periaux, J., Papailou, P., Fogarty, T. (eds.) EUROGEN 2001 Evolutionary Methods for Design, Optimization and Control with Applications to Industrial Problems, Athens, Greece, pp. 95-100 (2001)
[23]
Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition. IEEE Transactions on Evolutionary Computation 11(6), 712-731 (2007)
[24]
Deb, K., Mohan, M., Mishra, S.: Evaluating the -Domination Based Multi-Objective Evolutionary Algorithm for a Quick Computation of Pareto-Optimal Solutions. Evolutionary Computation 13(4), 501-525 (2005)
[25]
Toscano Pulido, G., Coello Coello, C.A.: The micro genetic algorithm 2: Towards online adaptation in evolutionary multiobjective optimization. In: Fonseca, C.M., Fleming, P.J., Zitzler, E., Deb, K., Thiele, L. (eds.) EMO 2003. LNCS, vol. 2632, pp. 252-266. Springer, Heidelberg (2003)
[26]
Knowles, J.: ParEGO: A Hybrid Algorithm With On-Line Landscape Approximation for Expensive Multiobjective Optimization Problems. IEEE Transactions on Evolutionary Computation 10(1), 50-66 (2006)
[27]
Chin-Wei, B., Rajeswari, M.: Multiobjective Optimization Approaches in Image Segmentation-The Directions and Challenges. In: International on Advances in Soft Computing and its Applications, March 2010, vol. 2(1), pp. 40-65 (2010)
[28]
Bhanu, B., Lee, S.: Genetic Learning for Adaptive Image Segmentation. Kluwer Academic Publishers, Boston (1994)
[29]
Shirakawa, S., Nagao, T.: Evolutionary Image Segmentation Based on Multiobjective Clustering. In: 2009 IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, May 2009, pp. 2466-2473. IEEE Press, Los Alamitos (2009)
[30]
Hamdani, T.M., Won, J.-M., Alimi, M.A.M., Karray, F.: Multi-objective feature selection with NSGA II. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 240-247. Springer, Heidelberg (2007)
[31]
Dasarathy, B.V.: Nearest Neighbor (NN) Norms: NN Pattern Classification Techniques. IEEE Computer Society Press, Los Alamitos (1990)
[32]
Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6(2), 182-197 (2002)
[33]
Morita, M., Sabourin, R., Bortolozzi, F., Suen, C.: Unsupervised Feature Selection Using Multi-Objective Genetic Algorithm for Handwritten Word Recognition. In: Proceedings of the 7th International Conference on Document Analysis and Recognition (ICDAR 2003), Edinburgh, Scotland, August 2003, pp. 666-670 (2003)
[34]
Emmanouilidis, C., Hunter, A., MacIntyre, J.: A Multiobjective Evolutionary Setting for Feature Selection and a Commonality-Based Crossover Operator. In: 2000 Congress on Evolutionary Computation, July 2000, vol. 1, pp. 309-316. IEEE Computer Society Press, Piscataway (2000)
[35]
Zaliz, R.R., Zwir, I., Ruspini, E.: Generalized Analysis of Promoters: A Method for DNA Sequence Description. In: Coello Coello, C.A., Lamont, G.B. (eds.) Applications of Multi-Objective Evolutionary Algorithms, pp. 427-449. World Scientific, Singapore (2004)
[36]
de la Iglesia, B., Reynolds, A., Rayward-Smith, V.J.: Developments on a multiobjective metaheuristic (MOMH) algorithm for finding interesting sets of classification rules. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 826-840. Springer, Heidelberg (2005)
[37]
de la Iglesia, B., Richards, G., Philpott, M., Rayward-Smith, V.: The application and effectiveness of a multi-objective metaheuristic algorithm for partial classification. European Journal of Operational Research 169, 898-917 (2006)
[38]
Bandyopadhyay, S., Pal, S.K., Aruna, B.: Multiobjective GAs, Quantitative Indices, and Pattern Classification. IEEE Transactions on Systems, Man, and Cybernetics--Part B: Cybernetics 34(5), 2088-2099 (2004)
[39]
Guo, P.F., Bhattacharya, P., Kharma, N.: An Efficient Image Pattern Recognition System Using an Evolutionary Search Strategy. In: Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, October 2009. IEEE Press, San Antonio (2009)
[40]
Koza, J.R.: Genetic Programming. On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge (1992)
[41]
Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9(1), 3-12 (2005)
[42]
López Jaimes, A., Coello Coello, C.A.: Applications of Parallel Platforms and Models in Evolutionary Multi-Objective Optimization. In: Lewis, A., Mostaghim, S., Randall, M. (eds.) Biologically-Inspired Optimisation Methods, pp. 23-49. Springer, Heidelberg (2009), ISBN 978-3-642-01261-7
[43]
Lim, D., Jin, Y., Ong, Y.S., Sendhoff, B.: Generalizing Surrogate-Assisted Evolutionary Computation. IEEE Transactions on Evolutionary Computation 14(3), 329-355 (2010)
[44]
Corne, D., Dorigo, M., Glover, F. (eds.): New Ideas in Optimization. McGraw-Hill, London (1999)
[45]
Kennedy, J., Eberhart, R.C.: Swarm Intelligence. Morgan Kaufmann Publishers, California (2001)
[46]
Chander, A., Chatterjee, A., Siarry, P.: A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Systems with Applications 38(5), 4998-5004 (2011)
[47]
Dasgupta, D. (ed.): Artificial Immune Systems and Their Applications. Springer, Berlin (1999)
[48]
Nunes de Castro, L., Timmis, J.: An Introduction to Artificial Immune Systems: A New Computational Intelligence Paradigm. Springer, London (2002)
[49]
Wang, W., Gao, S., Tang, Z.: Improved pattern recognition with complex artificial immune system. Soft Computing 13(12), 1209-1217 (2009)
[50]
Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004), ISBN 0-262-04219-3
[51]
Tambouratzis, G.: Using an Ant Colony Metaheuristic to Optimize Automatic Word Segmentation for Ancient Greek. IEEE Transactions on Evolutionary Computation 13(4), 742-753 (2009)

Cited By

View all
  • (2015)Enhancement of ELM by clustering discrimination manifold regularization and multiobjective FOA for semisupervised classificationComputational Intelligence and Neuroscience10.1155/2015/7314942015(51-51)Online publication date: 1-Jan-2015
  • (2014)Physical programming for preference driven evolutionary multi-objective optimizationApplied Soft Computing10.1016/j.asoc.2014.07.00924:C(341-362)Online publication date: 1-Nov-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
MCPR'11: Proceedings of the Third Mexican conference on Pattern recognition
June 2011
349 pages
ISBN:9783642215865

Sponsors

  • Cancun Technological Institute: Cancun Technological Institute
  • Mexican Association for Computer Vision, Neurocomputing and Robotics: Mexican Association for Computer Vision, Neurocomputing and Robotics
  • National Institute of Astrophysics: National Institute of Astrophysics, Optics and Electronics
  • IAPR: International Association for Pattern Recognition

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 29 June 2011

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 19 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2015)Enhancement of ELM by clustering discrimination manifold regularization and multiobjective FOA for semisupervised classificationComputational Intelligence and Neuroscience10.1155/2015/7314942015(51-51)Online publication date: 1-Jan-2015
  • (2014)Physical programming for preference driven evolutionary multi-objective optimizationApplied Soft Computing10.1016/j.asoc.2014.07.00924:C(341-362)Online publication date: 1-Nov-2014

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media