[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

Published: 01 April 2014 Publication History

Abstract

The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

References

[1]
D. Mihalas, B. Weibel-Mihalas, Foundations of Radiation Hydrodynamics, Dover Publications, Inc., Mineola, NY, 1999.
[2]
G.L. Olson, Efficient solution of multi-dimensional flux-limited nonequilibrium radiation diffusion coupled to material conduction with second-order time discretization, J. Comput. Phys., 226 (2007) 1181-1195.
[3]
D.J. Mavriplis, Multigrid approaches to non-linear diffusion problems on unstructured meshes, Numer. Linear Algebra Appl., 8 (2001) 499-512.
[4]
V.A. Mousseau, Physics-based preconditioning and the Newton-Krylov method for non-equilibrium radiation diffusion, J. Comput. Phys., 160 (2000) 743-765.
[5]
V. Mousseau, D. Knoll, New physics-based preconditioning of implicit methods for non-equilibrium radiation diffusion, J. Comput. Phys., 190 (2003) 42-51.
[6]
M.J. Berger, Adaptive mesh refinement for hyperbolic partial differential equations, Department of Computer Science, Stanford University, Stanford, CA, USA, August 1982.
[7]
D. Knoll, W. Rider, G. Olson, An efficient nonlinear solution method for non-equilibrium radiation diffusion, J. Quant. Spectrosc. Radiat. Transf., 63 (1999) 15-29.
[8]
R. Lowrie, A comparison of implicit time integration methods for nonlinear relaxation and diffusion, J. Comput. Phys., 196 (2004) 566-590.
[9]
P. Brown, D. Shumaker, C. Woodward, Fully implicit solution of large-scale non-equilibrium radiation diffusion with high order time integration, J. Comput. Phys., 204 (2005) 760-783.
[10]
G. Soderlind, Automatic control and adaptive time-stepping, Numer. Algorithms, 31 (2002) 281-310.
[11]
R. Glowinski, J. Toivanen, A multigrid preconditioner and automatic differentiation for non-equilibrium radiation diffusion problems, J. Comput. Phys., 207 (2005) 354-374.
[12]
A. Shestakov, J. Greenough, L. Howell, Solving the radiation diffusion and energy balance equations using pseudo-transient continuation, J. Quant. Spectrosc. Radiat. Transf., 90 (2005) 1-28.
[13]
L. Stals, Comparison of non-linear solvers for the solution of radiation transport equations, Electron. Trans. Numer. Anal., 15 (2003) 78-93.
[14]
M. Pernice, B. Philip, Solution of equilibrium radiation diffusion problems using implicit adaptive mesh refinement, SIAM J. Sci. Comput., 27 (2006) 1709-1726.
[15]
R.L. Bowers, J.R. Wilson, Numerical Modeling in Applied Physics and Astrophysics, Jones and Bartlett Publishers, 1991.
[16]
G.L. Olson, J.E. Morel, Solution of the radiation diffusion equation on an AMR Eulerian mesh with material interfaces, Los Alamos National Laboratory, 1999.
[17]
R.E. Ewing, R. Lazarov, P. Vassilevski, Local refinement techniques for elliptic problems on cell-centered grids. I. Error analysis, Math. Comput., 56 (1991) 437-461.
[18]
M.G. Edwards, Elimination of adaptive grid interface errors in the discrete cell centered pressure equation, J. Comput. Phys., 126 (1996) 356-372.
[19]
K. Lipnikov, J. Morel, M. Shashkov, Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes, J. Comput. Phys., 199 (2004) 589-597.
[20]
E. Hairer, G. Wanner, Solving Ordinary Differential Equations II Stiff and Differential-Algebraic Problems, Springer, 1996.
[21]
W.J. Rider, D.A. Knoll, G.L. Olson, A multigrid Newton-Krylov method for multimaterial equilibrium radiation diffusion, J. Comput. Phys., 152 (1999) 164-191.
[22]
L. Shampine, Error estimation and control for ODEs, J. Sci. Comput., 25 (2005) 3-16.
[23]
K. Brenan, S. Campbell, L. Petzold, Numerical Solution of Initial-Value Problems in Differential-Algebraic Equations, Society for Industrial and Applied Mathematics, 1987. http://books.google.com/books?id=FPuKkuzcFXkC
[24]
A.C. Hindmarsh, P.N. Brown, K.E. Grant, S.L. Lee, R. Serban, D.E. Shumaker, C.S. Woodward, Sundials: Suite of nonlinear and differential/algebraic equation solvers, ACM Trans. Math. Softw., 31 (2005) 363-396.
[25]
K. Gustafsson, M. Lundh, G. Soderlind, A PI stepsize control for the numerical solution of ordinary differential equations, BIT Numer. Math., 28 (1988) 270-287.
[26]
K. Gustafsson, Control-theoretic techniques for stepsize selection in implicit Runge-Kutta methods, ACM Trans. Math. Softw., 20 (1994) 496-517.
[27]
K. Gustafsson, G. Soderlind, Control strategies for the iterative solution of nonlinear equations in ODE solvers, SIAM J. Sci. Comput., 18 (1997) 23-40.
[28]
G. Soderlind, Digital filters in adaptive time-stepping, ACM Trans. Math. Softw., 29 (2003) 1-26.
[29]
G. Soderlind, L. Wang, Adaptive time-stepping and computational stability, J. Comput. Appl. Math., 185 (2006) 225-243.
[30]
P.M. Gresho, M.S. Engelman, R.L. Sani, Incompressible Flow and the Finite Element Method, vol. 2: Isothermal Laminar Flow, John Wiley and Sons, Ltd., Chichester, 2000.
[31]
D.A. Knoll, D.E. Keyes, Jacobian-free Newton-Krylov methods: a survey of approaches and applications, J. Comput. Phys., 193 (2004) 357-397.
[32]
R.S. Dembo, S.C. Eisenstat, T. Steihaug, Inexact Newton methods, SIAM J. Numer. Anal., 19 (1982) 400-408.
[33]
S.C. Eisenstat, H.F. Walker, Globally convergent inexact Newton methods, SIAM J. Optim., 4 (1994) 393-422.
[34]
C.T. Kelley, Iterative Methods for Linear and Nonlinear Equations, SIAM, Philadelphia, 1995.
[35]
Y. Saad, M. Schultz, GMRES: A generalized minimal residual algorithm for solving non-symetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986) 856-869.
[36]
P.R. McHugh, D.A. Knoll, Inexact Newton's method solution to the incompressible Navier-Stokes and energy equations using standard and matrix-free implementations, AIAA J., 32 (1994) 2394-2400.
[37]
S.F. McCormick, J.W. Thomas, The Fast Adaptive Composite grid (FAC) method for elliptic equations, Math. Comput., 46 (1986) 439-456.
[38]
S.F. McCormick, Multilevel Adaptive Methods for Partial Differential Equations, SIAM, Philadelphia, PA, 1989.
[39]
M. Berger, I. Rigoutsos, An algorithm for point clustering and grid generation, IEEE Trans. Syst. Man Cybern., 21 (1991) 1278-1286.
[40]
. http://www.llnl.gov/CASC/SAMRAI/
[41]
L.R. Petzold, An adaptive moving grid method for one-dimensional systems of partial differential equations and its numerical solution, Lawrence Livermore National Laboratory, 1988.
[42]
R. Trompert, J. Verwer, A static-regridding method for two-dimensional parabolic partial differential equations, Appl. Numer. Math., 8 (1991) 65-90.
[43]
J. Hyman, S. Li, L. Petzold, An adaptive moving mesh method with static rezoning for partial differential equations, Comput. Math. Appl., 46 (2003) 1511-1524.
[44]
R.E. Marshak, Effect of radiation on shock wave behavior, Phys. Fluids, 1 (1958) 24-29.
[45]
S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, The portable extensible toolkit for scientific computing. http://www.mcs.anl.gov/petsc
[46]
S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, PETSc users manual, Argonne National Laboratory, 2004.
[47]
S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes, B.F. Smith, H. Zhang, . http://www.mcs.anl.gov/petsc
[48]
B. Lee, S. McCormick, B. Philip, D. Quinlan, Asynchronous fast adaptive composite-grid methods: numerical results, SIAM J. Sci. Comput., 25 (2003) 682-700.
[49]
B. Lee, S. McCormick, B. Philip, D. Quinlan, Asynchronous fast adaptive composite-grid methods for elliptic problems: Theoretical foundations, SIAM J. Numer. Anal., 42 (2004) 130-152.
[50]
D. Estep, M. Pernice, D. Pham, S. Tavener, H. Wang, A posteriori error analysis of a cell-centered finite volume method for semilinear elliptic problems, J. Comput. Appl. Math., 233 (2009) 459-472.

Cited By

View all
  • (2016)Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large SupercomputersProceedings of the 7th ACM/SPEC on International Conference on Performance Engineering10.1145/2851553.2851575(225-236)Online publication date: 12-Mar-2016
  1. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

      Recommendations

      Comments

      Please enable JavaScript to view thecomments powered by Disqus.

      Information & Contributors

      Information

      Published In

      cover image Journal of Computational Physics
      Journal of Computational Physics  Volume 262, Issue C
      April 2014
      428 pages

      Publisher

      Academic Press Professional, Inc.

      United States

      Publication History

      Published: 01 April 2014

      Author Tags

      1. Adaptive mesh refinement
      2. Implicit methods
      3. Jacobian Free Newton-Krylov
      4. Multilevel solvers
      5. Non-equilibrium radiation diffusion
      6. Timestep control

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)0
      • Downloads (Last 6 weeks)0
      Reflects downloads up to 13 Dec 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2016)Communication Characterization and Optimization of Applications Using Topology-Aware Task Mapping on Large SupercomputersProceedings of the 7th ACM/SPEC on International Conference on Performance Engineering10.1145/2851553.2851575(225-236)Online publication date: 12-Mar-2016

      View Options

      View options

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media