[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Linear lower bound on degrees of Positivstellensatz calculus proofs for the parity

Published: 28 May 2001 Publication History

Abstract

In this paper we establish a linear (thereby, sharp) lower bound on degrees of Positivstellensatz calculus refutations over a real field introduced in Grigoriev and Vorobjov (Ann. Pure Appl. Logic, to appear), for the Tseitin tautologies and for the parity (the mod2 principle). We use the machinery of the Laurent proofs developed for binomial systems in Buss et al. (Proc. 31st Ann. ACM Symp. on Theory of Computing, 1999, pp. 547 556; J. Comput. Systems Sci., to appear).

References

[1]
P. Beame, R. Impagliazzo, J. Krají¿ek, T. Pitassi, P. Pudlák, Lower bounds on Hilbert's Nullstellensatz and propositional proofs, Proc. London Math. Soc. 73 (1996) 1-26.
[2]
J. Bochnak, M. Coste, M.-F. Roy, Real Algebraic Geometry, Springer, Berlin, 1998.
[3]
D. Brownawell, Bounds for the degrees in the Nullstellensatz, Ann. Math. 126 (1987) 577-591.
[4]
S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi, Linear gaps between degrees for polynomial calculus modulo distinct primes, Proc. 31st Ann. ACM Symp. on Theory of Computing, 1999; pp. 547-556.
[5]
S. Buss, D. Grigoriev, R. Impagliazzo, T. Pitassi, Linear gaps between degrees for polynomial calculus modulo distinct primes, J. Comput. Systems Sci., to appear.
[6]
S.R. Buss, R. Impagliazzo, J. Krají¿ek, P. Pudlák, A. Razborov, J. Sgall, Proof complexity in algebraic systems and bounded depth Frege systems with modular counting, Comput. Complexity 6 (1996/1997) 256-298.
[7]
M. Clegg, J. Edmonds, R. Impagliazzo, Using the Groebner basis algorithm to find proofs of unsatisfiability, Proc. 28th Ann. ACM Symp. on Theory of Computing, 1996, pp. 174-183.
[8]
D. Grigoriev, Nullstellensatz lower bounds for Tseitin tautologies, Proc. 39th Ann. IEEE Symp. on Foundations of Computer Science, 1998, pp. 648-652.
[9]
D. Grigoriev, N. Vorobjov, Complexity of Null - and Positivstellensatz proofs, Ann. Pure Appl. Logic, to appear.
[10]
R. Impagliazzo, P. Pudlák, J. Sgall, Lower bounds for polynomial calculus and the Groebner basis algorithm, Comput. Complexity 8 (1999) 127-144.
[11]
L. Lovász, Stable sets and polynomials, Discrete Math. 124 (1994) 137-153.
[12]
L. Lovász, A. Schrijver, Cones of matrices and set-functions and 0-1 optimization, SIAM J. Optim. 1 (1991) 166-190.
[13]
A. Lubotzky, R. Phillips, P. Sarnak, Ramanujan graphs, Combinatorica 8 (1988) 261-277.
[14]
G. Margulis, Explicit group-theoretical construction of combinatorial schemes and their applications to the design of expanders and concentrators, Problems Inform. Transmission 24 (1988) 39-46.
[15]
P. Pudlák, On the complexity of the propositional calculus, preprint, 1998.
[16]
A. Razborov, Lower bounds for the polynomial calculus, Comput. Complexity 7 (1998) 291-324.
[17]
G. Stengle, A Nullstellensatz and a Positivstellensatz in semialgebraic geometry, Math. Ann. 207 (1974) 87-97.
[18]
T. Stephen, L. Tunçel, On representation of the matching polytope via semidefinite liftings, preprint, 1998.
[19]
G. Tseitin, On the complexity of derivations in propositional calculus, Stud. Math. Math. Logic 2 (1968) 115-125.
[20]
A. Urquhart, The complexity of propositional proofs, Bull. Symbolic Logic 1 (1995) 425-467.

Cited By

View all
  • (2024)Random (log 𝑛)-CNF Are Hard for Cutting Planes (Again)Proceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649636(2008-2015)Online publication date: 10-Jun-2024
  • (2024)How Random CSPs Fool HierarchiesProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649613(1944-1955)Online publication date: 10-Jun-2024
  • (2021)Local statistics, semidefinite programming, and community detectionProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458143(1298-1316)Online publication date: 10-Jan-2021
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Theoretical Computer Science
Theoretical Computer Science  Volume 259, Issue 1
May 2001
681 pages

Publisher

Elsevier Science Publishers Ltd.

United Kingdom

Publication History

Published: 28 May 2001

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 06 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Random (log 𝑛)-CNF Are Hard for Cutting Planes (Again)Proceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649636(2008-2015)Online publication date: 10-Jun-2024
  • (2024)How Random CSPs Fool HierarchiesProceedings of the 56th Annual ACM Symposium on Theory of Computing10.1145/3618260.3649613(1944-1955)Online publication date: 10-Jun-2024
  • (2021)Local statistics, semidefinite programming, and community detectionProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458143(1298-1316)Online publication date: 10-Jan-2021
  • (2021)Strongly refuting all semi-random boolean CSPsProceedings of the Thirty-Second Annual ACM-SIAM Symposium on Discrete Algorithms10.5555/3458064.3458092(454-472)Online publication date: 10-Jan-2021
  • (2021)On the power and limitations of branch and cutProceedings of the 36th Computational Complexity Conference10.4230/LIPIcs.CCC.2021.6Online publication date: 20-Jul-2021
  • (2020)Lifting sum-of-squares lower bounds: degree-2 to degree-4Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3357713.3384319(840-853)Online publication date: 22-Jun-2020
  • (2020)(Semi)Algebraic proofs over {±1} variablesProceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing10.1145/3357713.3384288(78-90)Online publication date: 22-Jun-2020
  • (2019)Sherali-adams strikes backProceedings of the 34th Computational Complexity Conference10.4230/LIPIcs.CCC.2019.8(1-30)Online publication date: 17-Jul-2019
  • (2019)Size-degree trade-offs for sums-of-squares and positivstellensatz proofsProceedings of the 34th Computational Complexity Conference10.4230/LIPIcs.CCC.2019.24(1-20)Online publication date: 17-Jul-2019
  • (2019)Indistinguishability Obfuscation Without Multilinear Maps: New Paradigms via Low Degree Weak Pseudorandomness and Security AmplificationAdvances in Cryptology – CRYPTO 201910.1007/978-3-030-26954-8_10(284-332)Online publication date: 18-Aug-2019
  • Show More Cited By

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media