[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/2554673.2554682guidebooksArticle/Chapter ViewAbstractPublication PagesBookacm-pubtype
chapter

Approximation of sets based on partial covering

January 2013
Pages 144 - 220
Published: 01 January 2013 Publication History

Abstract

In classic Pawlakian rough set theory the sets used to approximations are equivalence classes which are pairwise disjoint and cover the universe. In this article we give up not only the pairwise disjoint property but also the covering of the universe.
After a historical and philosophical background, we define a general set theoretic approximation framework. First, we reconstruct the rough set theory and partly restate its some well---known facts in the language of this framework.
Next, we present a special approximation scheme. It is based on the partial covering of the universe which is called the base system and denoted by <InlineEquation ID="IEq1"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq1.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>. <InlineEquation ID="IEq2"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq2.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-definable sets and lower and upper <InlineEquation ID="IEq3"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq3.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximations are straightforward point---free generalizations of Pawlakian ones. We study such notions as single---layered base systems, <InlineEquation ID="IEq4"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq4.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-representations of <InlineEquation ID="IEq5"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq5.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-definable sets, and the exactness of sets. It is a well---known fact that the Pawlakian upper and lower approximations form a Galois connection. We clarify which conditions have to be satisfied by the upper and lower <InlineEquation ID="IEq6"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq6.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximations so that they form a (regular) Galois connection. Excluding the cases when the empty set is the upper <InlineEquation ID="IEq7"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq7.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximation of certain nonempty sets gives rise to a partial upper <InlineEquation ID="IEq8"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq8.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximation map. We also clear up that a partial upper <InlineEquation ID="IEq9"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq9.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximation map and a total lower <InlineEquation ID="IEq10"><InlineMediaObject><ImageObject Color="BlackWhite" FileRef="978-3-642-36505-8_9_Chapter_TeX2GIF_IEq10.gif" Format="GIF" Rendition="HTML" Type="Linedraw"/></InlineMediaObject><EquationSource Format="TEX">$\mathfrak{B}$</EquationSource></InlineEquation>-approximation map form a partial Galois connection.
In order to demonstrate the effectiveness of our approach we present three real---life examples in the last section.

References

[1]
Csajbók, Z.: Approximation of Sets Based on Partial Covering. PhD thesis, University of Debrecen, Debrecen (2011); Supervisors: Dr. Tamás Mihálydeák CSc and Prof. Attila Pethö
[2]
Pawlak, Z.: Information systems theoretical foundations. Information Systems 6(3), 205-218 (1981)
[3]
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11(5), 341-356 (1982)
[4]
Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning about Data. Kluwer Academic Publishers, Dordrecht (1991)
[5]
Pawlak, Z., Skowron, A.: Rough sets: Some extensions. Information Sciences 177, 28-40 (2007)
[6]
Skowron, A.: Vague concepts: A rough-set approach. In: De Baets, B., De Caluwe, R., De Tré, G., Fodor, J., Kacprzyk, J., Zadrožny, S. (eds.) Proceedings of EUROFUSE 2004, pp. 480-493. Akademicka Oficyna Wydawnicza EXIT, Warszawa (2004)
[7]
Skowron, A.: On topology in information system. Bulletin of the Polish Academy of Sciences, Mathematics 36, 477-479 (1988)
[8]
Xu, F., Yao, Y.Y., Miao, D.: Rough Set Approximations in Formal Concept Analysis and Knowledge Spaces. In: An, A., Matwin, S., Raś, Z. W., Ślęzak, D. (eds.) Foundations of Intelligent Systems. LNCS (LNAI), vol. 4994, pp. 319-328. Springer, Heidelberg (2008)
[9]
Yao, Y., Chen, Y.: Rough Set Approximations in Formal Concept Analysis. In: Peters, J. F., Skowron, A. (eds.) Transactions on Rough Sets V. LNCS, vol. 4100, pp. 285-305. Springer, Heidelberg (2006)
[10]
Yao, Y.Y.: On Generalizing Rough Set Theory. In: Wang, G., Liu, Q., Yao, Y., Skowron, A. (eds.) RSFDGrC 2003. LNCS (LNAI), vol. 2639, pp. 44-51. Springer, Heidelberg (2003)
[11]
Rasiowa, H., Skowron, A.: Rough Concept Logic. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 288-297. Springer, Heidelberg (1985)
[12]
Rasiowa, H., Skowron, A.: Approximation logic. In: Bibel, W., Jantke, K. P. (eds.) Mathematical Methods of Specification and Synthesis of Software Systems. Mathematical Research, vol. 31, pp. 123-139. Akademie Verlag, Berlin (1985)
[13]
Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logics. Intelligent Automation and Soft Computing, An International Journal 2, 103-120 (1996)
[14]
Orlowska, E. S.: Logic of vague concepts. Bulletin of the Section of Logic 11(3-4), 115-126 (1982)
[15]
Orlowska, E.: Algebraic Aspects of the Relational Knowledge Representation: Modal Relation Algebras. In: Pearce, D., Wansing, H. (eds.) All-Berlin 1990. LNCS, vol. 619, pp. 1-22. Springer, Heidelberg (1992)
[16]
Balbiani, P., Iliev, P., Vakarelov, D.: A modal logic for Pawlak's approximation spaces with rough cardinality n. Fundam. Inform. 83(4), 451-464 (2008)
[17]
Vakarelov, D.: A Modal Characterization of Indiscernibility and Similarity Relations in Pawlak's Information Systems. In: Ślęzak, D., Wang, G., Szczuka, M. S., Düntsch, I., Yao, Y. (eds.) RSFDGrC 2005. LNCS (LNAI), vol. 3641, pp. 12-22. Springer, Heidelberg (2005)
[18]
Nenov, Y., Vakarelov, D.: Modal logics for mereotopological relations. In: Areces, C., Goldblatt, R. (eds.) Advances in Modal Logic, College Publications, pp. 249- 272 (2008)
[19]
Järvinen, J., Kondo, M., Kortelainen, J.: Modal-like operators in boolean lattices, Galois connections and fixed points. Fundamenta Informaticae 76(1-2), 129-145 (2007)
[20]
Zhu, W., Wang, F.Y.: On three types of covering-based rough sets. IEEE Trans. Knowl. Data Eng. 19(8), 1131-1144 (2007)
[21]
Lin, T.Y.: Update and illustration on granular computing: Practices, theory and future directions. In: Hu, X., Lin, T.Y., Raghavan, V. V., Grzymala-Busse, J. W., Liu, Q., Broder, A. Z. (eds.) 2010 IEEE International Conference on Granular Computing, GrC 2010, San Jose, California, USA, August 14-16, pp. 32-33. IEEE Computer Society (2010)
[22]
Skowron, A., Swiniarski, R., Synak, P.: Approximation Spaces and Information Granulation. In: Peters, J. F., Skowron, A. (eds.) Transactions on Rough Sets III. LNCS, vol. 3400, pp. 175-189. Springer, Heidelberg (2005)
[23]
Skowron, A., Stepaniuk, J.: Information granules: Towards foundations of granular computing. International Journal of Intelligent Systems 16(1), 57-85 (2001)
[24]
Yao, Y.Y.: Information granulation and rough set approximation. International Journal of Intelligent Systems 16(1), 87-104 (2001)
[25]
Zadeh, L. A.: Granular Computing and Rough Set Theory. In: Kryszkiewicz, M., Peters, J. F., Rybiński, H., Skowron, A. (eds.) RSEISP 2007. LNCS (LNAI), vol. 4585, pp. 1-4. Springer, Heidelberg (2007)
[26]
Polkowski, L., Skowron, A., Żytkow, J.: Rough foundations for rough sets. In: Lin, T.Y., Wildberger, A. M. (eds.) Soft Computing: Rough Sets, Fuzzy Logic, Neural Networks, Uncertainty Management, Knowledge Discovery, pp. 55-58. Simulation Councils, Inc., San Diego (1995)
[27]
Skowron, A., Stepaniuk, J.: Tolerance approximation spaces. Fundamenta Informaticae 27(2-3), 245-253 (1996)
[28]
Słowiński, R., Vanderpooten, D.: Similarity relation as a basis for rough approximations. In: Wang, P. (ed.) Advances in Machine Intelligence and Soft-Computing, vol. IV, pp. 17-33. Duke University Press, Durham (1997)
[29]
Nieminen, J.: Rough tolerance equality. Fundamenta Informaticae 11, 289-294 (1988)
[30]
Marcus, S.: Tolerance rough sets, Čech topology, learning processes. Bulletin of the Polish Academy of Sciences, Technical Sciences 42(3), 471-478 (1994)
[31]
Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J. F., Skowron, A., Düntsch, I., Grzymała-Busse, J. W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400-498. Springer, Heidelberg (2007)
[32]
Zhu, W.: Relationship between generalized rough sets based on binary relation and covering. Information Sciences 179(3), 210-225 (2009)
[33]
Yao, Y.Y.: On Generalizing Pawlak Approximation Operators. In: Polkowski, L., Skowron, A. (eds.) RSCTC 1998. LNCS (LNAI), vol. 1424, pp. 298-307. Springer, Heidelberg (1998)
[34]
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) The Third International Workshop on Rough Sets and Soft Computing Proceedings (RSSC 1994), November 10-12. San Jose State University, San Jose (1994)
[35]
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. ICS Research Report 41/94, Warsaw University of Technology (1994)
[36]
Skowron, A., Stepaniuk, J.: Generalized approximation spaces. In: Lin, T., Wildberger, A. (eds.) Soft Computing, pp. 18-21. Simulation Councils, Inc., San Diego (1995)
[37]
Pawlak, Z., Polkowski, L., Skowron, A.: Rough sets: An approach to vagueness. In: Rivero, L.C., Doorn, J., Ferraggine, V. (eds.) Encyclopedia of Database Technologies and Applications, pp. 575-580. Idea Group Inc., Hershey (2005)
[38]
Revett, K., Gorunescu, F., Salem, A. B. M.: Feature selection in parkinson's disease: A rough sets approach. In: [119], pp. 425-428
[39]
Salem, A. B. M., Revett, K., El-Dahshan, E. S. A.: Machine learning in electrocardiogram diagnosis. In: [119], pp. 429-433
[40]
Zhu, P.: Covering rough sets based on neighborhoods: An approach without using neighborhoods. International Journal of Approximate Reasoning 52(3), 461-472 (2011)
[41]
Pawlak, Z., Skowron, A.: Rudiments of rough sets. Information Sciences 177(1), 3-27 (2007)
[42]
Pawlak, Z., Skowron, A.: Rough sets and boolean reasoning. Information Sciences 177(1), 41-73 (2007)
[43]
Chikalov, I., Lozin, V., Lozina, I., Moshkov, M., Nguyen, H. S., Skowron, A., Zielosko, B.: Three Approaches to Data Analysis. ISRL, vol. 41. Springer, Heidelberg (2013)
[44]
Skowron, A., Suraj, Z. (eds.): Rough sets and intelligent systems - Professor Zdzisław Pawlak inmemoriam. Volume1. ISRL, vol. 42. Springer, Heidelberg (2013)
[45]
Skowron, A., Suraj, Z. (eds.): Rough Sets and Intelligent Systems - Professor Zdzisław Pawlak in Memoriam. ISRL, vol. 43. Springer, Heidelberg (2013)
[46]
Skowron, A., Chakraborty, M. K., Grzymała-Busse, J., Marek, V., Pal, S. K., Peters, J., Rozenberg, G.: Ślęzak, D., Słowiński, R., Tsumoto, S., Wakulicz-Deja, A., Wang, G., Ziarko, W.: Professor Zdzisław Pawlak (1926-2006); Founder of the polish school of artificial intelligence. In: [44], 1-56
[47]
Skowron, A.: List of works by professor Zdzisław Pawlak (1926-2006). In: [44], 57-74
[48]
Nguyen, H. S., Skowron, A.: From rudiments to challenges. In: [44] 75-173
[49]
Keefe, R.: Theories of Vagueness. Cambridge Studies in Philosophy. Cambridge University Press, Cambridge (2000)
[50]
Pawlak, Z.: Some Issues on Rough Sets. In: Peters, J. F., Skowron, A., Grzymała-Busse, J. W., Kostek, B., Swiniarski, R. W., Szczuka, M. S. (eds.) Transactions on Rough Sets I. LNCS, vol. 3100, pp. 1-58. Springer, Heidelberg (2004)
[51]
Russell, B.: Vagueness. Australasian Journal of Philosophy and Psychology 1, 84-92 (1923)
[52]
Sorensen, R.: Vagueness. In: Zalta, E. N. (ed.): The Stanford Encyclopedia of Philosophy (Fall 2008 Edition), http://plato.stanford.edu/archives/fall2008/entries/vagueness/ (updated on August 29, 2006), (last accesed on November 6, 2012)
[53]
Keefe, R., Smith, P.: Introduction: Theories of vagueness. In: [44] 1-57
[54]
Priest, G.: A site for sorites. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on Paradox, pp. 9-23. Oxford University Press Inc., New York (2003)
[55]
Varzi, A.C.: Cut-offs and their neighbors. In: Beall, J.C. (ed.) Liars and Heaps: New Essays on Paradox, pp. 24-38. Oxford University Press Inc., New York (2003)
[56]
Keefe, R., Smith, P. (eds.): Vagueness: A Reader. MIT Press, Cambridge (1996)
[57]
American Association for Clinical Chemistry: Lab tests online. Glucose, http://labtestsonline.org/understanding/analytes/glucose/tab/glance (updated on March 23, 2012), (last accessed on November 7, 2012)
[58]
Frege, G.: Grundgesetzen der Arithmetik, begriffsschriftlich abgeleitet, vol. 2. Verlag von Hermann Pohle, Jena (1903)
[59]
Peirce, C. S.: Vague. In: Baldwin, J. M. (ed.) Dictionary of Philosophy and Psychology, vol. 748. MacMillan, New York (1902)
[60]
Pawlak, Z.: Vagueness - A Rough Set View. In: Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer Science. LNCS, vol. 1261, pp. 106-117. Springer, Heidelberg (1997)
[61]
Skowron, A.: Rough sets and vague concepts. Fundamenta Informaticae 64(1-4), 417-431 (2005)
[62]
Zadeh, L. A.: Fuzzy sets. Information and Control 8(3), 338-353 (1965)
[63]
Dubois, D., Esteva, F., Godo, L., Prade, H.: An information-based discussion of vagueness. In: Lefebvre, C., Cohen, H. (eds.) Handbook of Categorization in Cognitive Science, pp. 892-913. Elsevier (2005); Part 8. Machine Category learning
[64]
Lin, T.Y.: Approximation Theories: Granular Computing vs Rough Sets. In: Chan, C.-C., Grzymala-Busse, J. W., Ziarko, W. P. (eds.) RSCTC 2008. LNCS (LNAI), vol. 5306, pp. 520-529. Springer, Heidelberg (2008)
[65]
Lin, T.Y.: Granular computing: Practices, theories, and future directions. In: Meyers, R. A. (ed.) Encyclopedia of Complexity and Systems Science, pp. 4339-4355. Springer, Heidelberg (2009)
[66]
Odifreddi, P.: Classical Recursion Theory. The Theory of Functions and Sets of Natural Numbers. Studies in Logic and the Foundations of Mathematics, vol. 125. Elsevier, Amsterdam (1989)
[67]
Yao, Y., Yao, B.: Covering based rough set approximations. Information Sciences 200, 91-107 (2012)
[68]
Düntsch, I., Gediga, G.: Approximation Operators in Qualitative Data Analysis. In: de Swart, H., Orłowska, E., Schmidt, G., Roubens, M. (eds.) TARSKI 2003. LNCS, vol. 2929, pp. 214-230. Springer, Heidelberg (2003)
[69]
Ciucci, D.: A Unifying Abstract Approach for Rough Models. In: Wang, G., Li, T., Grzymala-Busse, J. W., Miao, D., Skowron, A., Yao, Y. (eds.) RSKT 2008. LNCS (LNAI), vol. 5009, pp. 371-378. Springer, Heidelberg (2008)
[70]
Csajbók, Z.: Partial approximative set theory: A generalization of the rough set theory. In:Martin, T., Muda, A. K., Abraham, A., Prade, H., Laurent, A., Laurent, D., Sans, V. (eds.) Proceedings of SoCPaR 2010, December 7-10, pp. 51-56. IEEE, Cergy Pontoise (2010)
[71]
Csajbók, Z.: A security model for personal information security management based on partial approximative set theory. In: Ganzha, M., Paprzycki, M. (eds.) Proceedings of the International Multiconference on Computer Science and Information Technology (IMCSIT 2010), Wisła, Poland, October 18-20, pp. 839-845. Polskie Towarzystwo Informatyczne - IEEE Computer Society Press, Los Alamitos (2010)
[72]
Pomykała, J. A.: Some remarks on approximation. Demonstratio Mathematica 24(1-2), 95-104 (1991)
[73]
Zakowski, W.: Approximations in the space (U,Π). Demonstratio Mathematica 16(3), 761-769 (1983)
[74]
Ciucci, D.: Approximation algebra and framework. Fundamenta Informaticae 94, 147-161 (2009)
[75]
Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)
[76]
Denecke, K., Erné, M., Wismath, S. (eds.): Galois Connections and Applications. Kluwer Academic Publishers, Dordrecht (2004)
[77]
Csajbók, Z.: Approximation of sets based on partial covering. Theoretical Computer Science 412(42), 5820-5833 (2011); Rough Sets and Fuzzy Sets in Natural Computing
[78]
Csajbók, Z.: Simultaneous anomaly and misuse intrusion detections based on partial approximative set theory. In: Cotronis, Y., Danelutto, M., Papadopoulos, G. A. (eds.) Proceedings of PDP 2011, February 9-11, pp. 651-655. IEEE Computer Society Press, Los Alamitos (2011)
[79]
Csajbók, Z., Mihálydeák, T.: General Tool-Based Approximation Framework Based on Partial Approximation of Sets. In: Kuznetsov, S. O., Ślęzak, D., Hepting, D. H., Mirkin, B. G. (eds.) RSFDGrC 2011. LNCS, vol. 6743, pp. 52-59. Springer, Heidelberg (2011)
[80]
Birkhoff, G.: Lattice theory, 3rd edn., vol. 25. Colloquium Publications. American Mathematical Society, Providence, Rhode Island (1967)
[81]
Gierz, G., Hofmann, K., Keimel, K., Lawson, J., Mislove, M., Scott, D.: Continuous Lattices and Domains. Encyclopedia of Mathematics and its Applications, vol. 93. Cambridge University Press (2003)
[82]
Grätzer, G.: General Lattice Theory. Birkhäuser Verlag, Basel und Stuttgart (1978)
[83]
Miné, A.: Weakly Relational Numerical Abstract Domains. PhD thesis, École Polytechnique, Palaiseau, France (December 2004)
[84]
Pagliani, P., Chakraborty, M.: A Geometry of Approximation: Rough Set Theory Logic, Algebra and Topology of Conceptual Patterns (Trends in Logic). Springer Publishing Company, Incorporated (2008)
[85]
Järvinen, J.: Lattice Theory for Rough Sets. In: Peters, J. F., Skowron, A., Düntsch, I., Grzymała-Busse, J. W., Orłowska, E., Polkowski, L. (eds.) Transactions on Rough Sets VI. LNCS, vol. 4374, pp. 400-498. Springer, Heidelberg (2007)
[86]
Csajbók, Z.: On the partial approximation of sets. Acta Medicinae et Sociologica 2(2), 143-152 (2011)
[87]
Salomaa, A.: Computation and automata. In: Encyclopedia of Mathematics and its Applications, vol. 25. Cambridge University Press, New York (1985)
[88]
Stadler, P. F., Stadler, B. M. R.: Genotype phenotype maps. Biological Theory 3, 268-279 (2006)
[89]
Zhu, W., Wang, F.Y.: Reduction and axiomization of covering generalized rough sets. Information Sciences 152(1), 217-230 (2003)
[90]
Yang, T., Li, Q.: Reduction about approximation spaces of covering generalized rough sets. International Journal of Approximate Reasoning 51(3), 335-345 (2010)
[91]
Mihálydeák, T.: On tarskian models of general type-theoretical languages. In: Drossos, C., Peppas, P., Tsinakis, C. (eds.) Proceedings of the 7th Panhellenic Logic Symposium, pp. 127-131. Patras University Press, Patras (2009)
[92]
Järvinen, J.: Properties of rough approximations. Journal of Advanced Computational Intelligence and Intelligent Informatics 9(5), 502-505 (2005)
[93]
Järvinen, J.: Pawlak's information systems in terms of Galois connections and functional dependencies. Fundamenta Informaticae 75(1-4), 315-330 (2007)
[94]
Kari, L., Rozenberg, G.: The many facets of natural computing. Communications of the ACM 51(10), 72-83 (2008)
[95]
Krasser, D., Horváth, F., Illyés, E., Molnár, Z., Biró, M., Botta-Dukát, Z., Bölöni, J., Oláh, K.: MÉTA programme - Vegetation Heritage of Hungary, http://www.novenyzetiterkep.hu/?q=en/english/node/70 (updated on September 9, 2012), (last accessed on November 7, 2012)
[96]
Molnár, Z., Bartha, S., Seregélyes, T., Illyés, E., Botta-Dukát, Z., Tímár, G., Horváth, F., Révész, A., Kun, A., Bölöni, J., Biró, M., Bodonczi, L., Deák, A. J., Fogarasi, P., Horváth, A., Isépy, I., Karas, L., Kecskés, F., Molnár, C., Ortmannn é Ajkai, A., Rév, S.: A grid-based, satellite-image supported multiattributed vegetation mapping method (MÉTA). Folia Geobotanica 42, 225-247 (2007)
[97]
Bölöni, J., Molnár, Z., Illyés, E., Kun, A.: A new habitat classification and manual for standardized habitat mapping. Annali di Botanica Nuova Serie 7, 105-126 (2007)
[98]
Horváth, F., Molnár, Z., Bölöni, J., Pataki, Z., Polgár, L., Révész, A., Oláh, K., Krasser, D., Illyés, E.: Fact sheet of the MÉTA database 1.2. Acta Botanica Hungarica 50(suppl.), 11-34 (2008)
[99]
Takács, G., Molnár, Z. (eds.): National Biodiversity Monitoring System XI. Habitat mapping. MTA Ökológiai éés Botanikai Kutatóintézete (Institute of Ecology and Botany of the Hungarian Academy of Sciences) (Vácrátót) and Környezetvédelmi és Vízügyi Minisztérium (Ministry of Environment and Water) (Budapest), Vácrátót (2009)
[100]
Fekete, G., Molnár, Z., Hotváth, F. (eds.): A magyarországi élöhelyek leírása és hatáározókönyve. A Nemzeti Élöhely-osztályozási Rendszer (Guide and description of the Hungarian habitats. The National Habitat Classification System). Term észettudományi Múzeum, Budapest (1997) (in Hungarian)
[101]
Bölöni, J., Kun, A., Molnár, Z.: Élöhely-ismereti Útmutató (Habitat guide). MTA Ökológiai éés Botanikai Kutatóintézete (Institute of Ecology and Botany of the Hungarian Academy of Sciences), Vácrátót (2003) (in Hungarian)
[102]
Molnár, Z., Biró, M., Bölöni, J.: Appendix - English names of the Á-NÉR habitat types. Acta Botanica Hungarica 50(supl.), 249-255 (2008)
[103]
Molnár, Z., Bölöni, J., Horváth, F.: Threating factors encountered: Actual endangerment of the hungarian (semi-)natural habitats. Acta Botanica Hungarica 50(supl.), 199-217 (2008)
[104]
Anderson, R. J.: Security Engineering: A Guide to Building Dependable Distributed Systems, 2nd edn. Wiley (2008)
[105]
Senior Officials Group-Information Systems Security: Information Technology Security Evaluation Criteria (ITSEC). Department of Trade and Industry (1991)
[106]
Caelli, W., Longley, D., Shain, M.: Information security handbook. Stockton Press, New York (1991)
[107]
Goguen, J. A., Meseguer, J.: Security policies and security models. In: Proceedings of the IEEE Symposium on Research in Security and Privacy, pp. 11-20. IEEE Computer Society Press, Oakland (1982)
[108]
Bishop, M.: Computer Security: Art and Science. Addison Wesley (2002)
[109]
Beghdad, R.: Modelling and solving the intrusion detection problem in computer networks. Computers & Security 23(8), 687-696 (2004)
[110]
Wang, G., Long, C., Yu, W.: Rough set based solutions for network security. In: Dunin-Keplicz, B., Jankowski, A., Skowron, A., Szczuka, M. (eds.) Monitoring. Security, and Rescue Techniques in Multiagent Systems. AISC, vol. 28, pp. 455- 465. Springer, Berlin (2005)
[111]
Wang, W., Guan, X., Zhang, X., Yang, L.: Profiling program behavior for anomaly intrusion detection based on the transition and frequency property of computer audit data. Computers & Security 25(7), 539-550 (2006)
[112]
Denning, D. E.: An intrusion-detection model. IEEE Transactions on Software Engineering SE-13(2), 222-232 (1987)
[113]
Bauer, L., Ligatti, J., Walker, D.: More enforceable security policies. In: Foundations of Computer Security, Copenhagen, Denmark (July 2002)
[114]
Ciucci, D.: Orthopairs: A simple and widely usedway to model uncertainty. Fundamenta Informaticae 108(3-4), 287-304 (2011)
[115]
Iwinski, T.: Algebras for rough sets. Bulletin of the Polish Academy of Sciences, Series: Mathematics 35, 673-683 (1987)
[116]
Yao, Y., Li, X.: Comparison of rough-set and interval-set models for uncertain reasoning. Fundamenta Informaticae 27(2, 3), 289-298 (1996)
[117]
Dubois, D., Prade, H.: An introduction to bipolar representations of information and preference. International Journal of Intelligent Systems 23(8), 866-877 (2008)
[118]
Lavrač, N., Džeroski, S.: Inductive Logic Programming: Techniques and Applications. Ellis Horwood, New York (1994)
[119]
Proceedings of the International Multiconference on Computer Science and Information Technology. In: IMCSIT 2009, Mragowo, Poland, October 12-14. Polskie Towarzystwo Informatyczne - IEEE Computer Society Press (2009)

Cited By

View all
  • (2013)Partial Approximation of Multisets and Its Applications in Membrane ComputingProceedings of the 8th International Conference on Rough Sets and Knowledge Technology - Volume 817110.1007/978-3-642-41299-8_10(99-108)Online publication date: 11-Oct-2013
  1. Approximation of sets based on partial covering

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image Guide books
    Transactions on Rough Sets XVI
    January 2013
    220 pages
    ISBN:9783642365041

    Publisher

    Springer-Verlag

    Berlin, Heidelberg

    Publication History

    Published: 01 January 2013

    Author Tags

    1. Galois connections
    2. approximation of sets
    3. partial covering
    4. rough set theory

    Qualifiers

    • Chapter

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)0
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 13 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2013)Partial Approximation of Multisets and Its Applications in Membrane ComputingProceedings of the 8th International Conference on Rough Sets and Knowledge Technology - Volume 817110.1007/978-3-642-41299-8_10(99-108)Online publication date: 11-Oct-2013

    View Options

    View options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media