[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Modular Assembly Micro-Robots for Natural Orifice Transluminal Endoscopic Surgery, the Future of Minimal Invasive Surgery

Published: 01 October 2012 Publication History

Abstract

Surgical operations are progressively being performed using minimally invasive techniques. Natural Orifice Transluminal Endoscopic Surgery NOTES is a novel surgical technique that uses the natural orifices of the human body in order to approach the peritoneal cavity. There are two basic types of robotics for NOTES; the external robots that stay outside the patient but act inside the abdominal cavity, and the internal robots that stay and act in the abdomen. The internal robots could only be mini-robots. The development of modular assembling reconfigurable micro-robots is a revolutionary idea for the NOTES. Modular micro-robots consist of small subunits which could be assembled and construct a functional miniature robot. These surgical micro-robots may increase the possibility for true scarless tele-surgery. Although specific applications of intrabdominal surgical micro-robots are still in an early concept stage, the field is rapidly evolving. In the future, patients may be operated by specialized micro-robotic intrabdominal surgeons.

References

[1]
Aron, M., Haber, G.-P., Desai, M. M., & Gill, I. S. 2007. Flexible robotics: A new paradigm. Current Opinion in Urology, 173, 151-155. 17414511.
[2]
Bergström, M., Ikeda, K., Swain, P., & Park, P.-O. 2006. Transgastric anastomosis by using flexible endoscopy in a porcine model with video. Gastrointestinal Endoscopy, 632, 307-312. 16427940.
[3]
Box, G. N., Lee, H. J., Santos, R. J. S., Abraham, J. B. A., Louie, M. K., & Gamboa, A. J. R. et¿al. 2008. Rapid communication: Robot-assisted NOTES nephrectomy: Initial report. Journal of Endourology, 223, 503-506. 18355143.
[4]
Canes, D., Lehman, A. C., Farritor, S. M., Oleynikov, D., & Desai, M. M. 2009. The future of NOTES instrumentation: Flexible robotics and in vivo minirobots. Journal of Endourology, 235, 787-792. 19413496.
[5]
Catrysse, M., Hermans, B., & Puers, R. 2004. An inductive power system with integrated bi-directional data-transmission. Sensors and Actuators. A, Physical, 1152-3, 221-229.
[6]
Clark, M. P., Qayed, E. S., Kooby, D. A., Maithel, S. K., & Willingham, F. F. 2012. Natural orifice translumenal endoscopic surgery in humans: A review. Minimally Invasive Surgery. Retrieved August 15, 2012, from http://www.hindawi.com/journals/mis/2012/189296/
[7]
Decarli, L. A., Zorron, R., Branco, A., Lima, F. C., Tang, M., & Pioneer, S. R. et¿al. 2009. New hybrid approach for NOTES transvaginal cholecystectomy: Preliminary clinical experience. Surgical Innovation, 162, 181-186. 19546124.
[8]
Eliakim, A. R. 2006. Video capsule endoscopy of the small bowel PillCam SB. Current Opinion in Gastroenterology, 222, 124-127. 16462167.
[9]
Flückiger, M., Neild, A., & Nelson, B. J. 2012. Optimization of receiver arrangements for passive emitter localization methods. Ultrasonics, 523, 447-455. 22112792.
[10]
Forgione, A. 2009. In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives. Surgical Oncology, 182, 121-129. 19147345.
[11]
Haber, G.-P., Crouzet, S., Kamoi, K., Berger, A., Aron, M., & Goel, R. et¿al. 2008. Robotic NOTES Natural Orifice Translumenal Endoscopic Surgery in reconstructive urology: Initial laboratory experience. Urology, 716, 996-1000. 18455769.
[12]
Harada, K., Oetomo, D., Susilo, E., Menciassi, A., Daney, D., Merlet, J.-P., & Dario, P. 2010. A reconfigurable modular robotic endoluminal surgical system: Vision and preliminary results. Robotica, 282, 171-183.
[13]
Horgan, S., Cullen, J. P., Talamini, M. A., Mintz, Y., Ferreres, A., & Jacobsen, G. R. et¿al. 2009. Natural orifice surgery: Initial clinical experience. Surgical Endoscopy, 237, 1512-1518. 19343435.
[14]
Intuitive Surgical, Inc. 2012. da Vinci surgical system. Retrieved August 1, 2012, from http://www.intuitivesurgical.com/
[15]
Kalloo, A. N., Singh, V. K., Jagannath, S. B., Niiyama, H., Hill, S. L., & Vaughn, C. A. et¿al. 2004. Flexible transgastric peritoneoscopy: A novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. Gastrointestinal Endoscopy, 601, 114-117. 15229442.
[16]
Kantsevoy, S. V., Jagannath, S. B., Niiyama, H., Chung, S. S. C., Cotton, P. B., & Gostout, C. J. et¿al. 2005. Endoscopic gastrojejunostomy with survival in a porcine model. Gastrointestinal Endoscopy, 622, 287-292. 16046997.
[17]
Karimyan, V., Sodergren, M., Clark, J., Yang, G.-Z., & Darzi, A. 2009. Navigation systems and platforms in natural orifice translumenal endoscopic surgery NOTES. International Journal of Surgery, 74, 297-304. 19481186.
[18]
Ko, C.-W., & Kalloo, A. N. 2006. Per-oral transgastric abdominal surgery. Chinese Journal of Digestive Diseases, 72, 67-70. 16643332.
[19]
Lehman, A. C., Berg, K. A., Dumpert, J., Wood, N. A., Visty, A. Q., & Rentschler, M. E. et¿al. 2008. Surgery with cooperative robots. Computer Aided Surgery: Official Journal of the International Society for Computer Aided Surgery, 132, 95-105. 18317958.
[20]
Lehman, A. C., Dumpert, J., Wood, N. A., Redden, L., Visty, A. Q., Farritor, S., & Oleynikov, D. 2009. Natural orifice cholecystectomy using a miniature robot. Surgical Endoscopy, 232, 260-266. 19057960.
[21]
Marescaux, J., Dallemagne, B., Perretta, S., Wattiez, A., Mutter, D., & Coumaros, D. 2007. Surgery without scars: Report of transluminal cholecystectomy in a human being. Archives of Surgery, 1429, 823-827. 17875836.
[22]
McGee, M. F., Rosen, M. J., Marks, J., Onders, R. P., Chak, A., & Faulx, A. et¿al. 2006. A primer on natural orifice transluminal endoscopic surgery: Building a new paradigm. Surgical Innovation, 132, 86-93. 17012148.
[23]
Merchea, A., Cullinane, D. C., Sawyer, M. D., Iqbal, C. W., Baron, T. H., & Wigle, D. et¿al. 2010. Esophagogastroduodenoscopy-associated gastrointestinal perforations: A single-center experience. Surgery, 1484, 876-882. 20708766.
[24]
Miedema, B. W., Astudillo, J. A., Sporn, E., & Thaler, K. 2008. NOTES techniques: Present and future. European Surgery, 403, 103-110.
[25]
Nagy, Z., Abbott, J., & Nelson, B. 2007. The magnetic self-aligning hermaphroditic connector - A scalable approach for modular microrobots. In Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Zurich, Switzerland pp. 1-6.
[26]
Nagy, Z., Fluckiger, M., Oung, R., Kaliakatsos, I. K., Hawkes, E. W., & Nelson, B. J. et¿al. 2009. Assembling reconfigurable endoluminal surgical systems: Opportunities and challenges. International Journal of Biomechatronics and Biomedical Robotics, 11, 3-16.
[27]
Nagy, Z., Oung, R., Abbott, J. J., & Nelson, B. J. 2008. Experimental investigation of magnetic self-assembly for swallowable modular robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France pp. 1915-1920.
[28]
Noll, A. 2008. Flexible robotic endoscopic technology for surgical and diagnostic applications. Retrieved August 3, 2012, from http://www.eats.fr/doi-lt01ennoll001.htm
[29]
Oleynikov, D., Rentschler, M., Hadzialic, A., Dumpert, J., Platt, S. R., & Farritor, S. 2005. Miniature robots can assist in laparoscopic cholecystectomy. Surgical Endoscopy, 194, 473-476. 15742124.
[30]
Peirs, J., Reynaerts, D., & Van Brussel, H. 1998. Scale effects and thermal considerations for micro-actuators. In Proceedings of the International Conference on Robotics and Automation Vol. 2, pp. 1516-1521.
[31]
Phee, S. J., Ho, K. Y., Lomanto, D., Low, S. C., Huynh, V. A., & Kencana, A. P. et¿al. 2010. Natural orifice transgastric endoscopic wedge hepatic resection in an experimental model using an intuitively controlled master and slave transluminal endoscopic robot MASTER. Surgical Endoscopy, 249, 2293-2298. 20177915.
[32]
Rattner, D. W., Hawes, R., Schwaitzberg, S., Kochman, M., & Swanstrom, L. 2011. The second SAGES/ASGE white paper on natural orifice transluminal endoscopic surgery: 5 years of progress. Surgical Endoscopy, 258, 2441-2448. 21359881.
[33]
Rentschler, M. E., Dumpert, J., Platt, S. R., Ahmed, S. I., Farritor, S. M., & Oleynikov, D. 2006. Mobile in vivo camera robots provide sole visual feedback for abdominal exploration and cholecystectomy. Surgical Endoscopy, 201, 135-138. 16333551.
[34]
Rentschler, M. E., Dumpert, J., Platt, S. R., Farritor, S. M., & Oleynikov, D. 2006. Mobile in vivo biopsy and camera robot. Studies in Health Technology and Informatics, 119, 449-454. 16404097.
[35]
Rentschler, M. E., Dumpert, J., Platt, S. R., Farritor, S. M., & Oleynikov, D. 2007. Natural orifice surgery with an endoluminal mobile robot. Surgical Endoscopy, 217, 1212-1215. 17522926.
[36]
Ryu, M., Kim, J. D., Chin, H. U., Kim, J., & Song, S. Y. 2007. Three-dimensional power receiver for in vivo robotic capsules. Medical & Biological Engineering & Computing, 4510, 997-1002. 17684783.
[37]
Scott, D. J., Tang, S., Fernandez, R., Bergs, R., Goova, M. T., & Zeltser, I. et¿al. 2007. Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments. Surgical Endoscopy, 2112, 2308-2316. 17704871.
[38]
Shah, B. C., Buettner, S. L., Lehman, A. C., Farritor, S. M., & Oleynikov, D. 2009. Miniature in vivo robotics and novel robotic surgical platforms. The Urologic Clinics of North America, 362, 251-263. 19406325.
[39]
Thompson, C. 2007. Multitasking platform. Retrieved August 3, 2012, from http://www.eats.fr/doi-lt01enthompson002.htm
[40]
Wagh, M. S., Merrifield, B. F., & Thompson, C. C. 2005. Endoscopic transgastric abdominal exploration and organ resection: Initial experience in a porcine model. Clinical Gastroenterology and Hepatology: The Official Clinical Practice Journal of the American Gastroenterological Association, 39, 892-896. 16234027.
[41]
Wagh, M. S., Merrifield, B. F., & Thompson, C. C. 2006. Survival studies after endoscopic transgastric oophorectomy and tubectomy in a porcine model. Gastrointestinal Endoscopy, 633, 473-478. 16500399.
[42]
Wautelet, M. 2001. Scaling laws in the macro-, micro- and nanoworlds. European Journal of Physics, 226, 601-611.
[43]
Wells, P. 2000. Current status and future technical advances of ultrasonic imaging. IEEE Engineering in Medicine and Biology Magazine, 195, 14-20. 11016026.
[44]
Yim, M., Shen, W., Salemi, B., Rus, D., Moll, M., & Lipson, H. et¿al. 2007. Modular self-reconfigurable robot systems {grand challenges of robotics}. IEEE Robotics & Automation Magazine, 141, 43-52.
[45]
Yoshida, E., Matura, S., Kamimura, A., Tomita, K., Kurokawa, H., & Kokaji, S. 2002. A self-reconfigurable modular robot: Reconfiguration planning and experiments. The International Journal of Robotics Research, 2110-11, 903-915.
[46]
Zorron, R., Palanivelu, C., Galvão Neto, M. P., Ramos, A., Salinas, G., & Burghardt, J. et¿al. 2010. International multicenter trial on clinical natural orifice surgery--NOTES IMTN study: Preliminary results of 362 patients. Surgical Innovation, 172, 142-158. 20504792.
[47]
Zygomalas, A., Gkiokas, K., & Koutsouris, D. D. 2011. In silico development and simulation of a modular reconfigurable assembly micro-robot for use in natural orifice transluminal endoscopic surgery. Hellenic Journal of Surgery, 834, 190-196.

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image International Journal of Reliable and Quality E-Healthcare
International Journal of Reliable and Quality E-Healthcare  Volume 1, Issue 4
October 2012
79 pages
ISSN:2160-9551
EISSN:2160-956X
Issue’s Table of Contents

Publisher

IGI Global

United States

Publication History

Published: 01 October 2012

Author Tags

  1. Laparoscopy
  2. Micro-Robots
  3. Natural Orifice Transluminal Endoscopic Surgery NOTES
  4. Peritoneal Cavity
  5. Scarless Tele-Surgery
  6. Surgery

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 0
    Total Downloads
  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 30 Dec 2024

Other Metrics

Citations

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media