[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1784462.1784486guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Compression of digital road networks

Published: 16 July 2007 Publication History

Abstract

In the consumer market, there has been an increasing interest in portable navigation systems in the last few years. These systems usually work on digital map databases stored on SD cards. As the price for these SD cards heavily depends on their capacity and as digital map databases are rather space-consuming, relatively high hardware costs go along with digital map databases covering large areas like Europe or the USA. In this paper, we propose new techniques for the compact storage of the most important part of these databases, i.e., the road network data. Our solution applies appropriate techniques from combinatorial optimization, e.g., adapted solutions for the minimum bandwidth problem, and from data mining, e.g., clustering based on suitable distance measures. In a detailed experimental evaluation based on real-world data, we demonstrate the characteristics and benefits of our new approaches.

References

[1]
Williams, H.E., Zobel, J.: Compressing integers for fast file access. The Computer Journal 42(3), 193-201 (1999).
[2]
Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Canadian Cartographer 10(2), 112-122 (1973).
[3]
Papadimitriou, C.H.: The np-completeness of the bandwidth minimization problem. Computing 16, 263-270 (1976).
[4]
Garey, M., Graham, R., Johnson, D., Knuth, D.: Complexity results for bandwidth minimization. SIAM Journal of Applied Mathematics 34(3), 477-495 (1978).
[5]
Caprara, A., Salazar-Gonzalez, J.-J.: Laying out sparse graphs with provably minimum bandwidth. Informs Journal on Computing 17(3), 356-373 (2005).
[6]
Campos, V. Piñana, E., Martí, R.: Adaptive memory programming for matrix bandwidth minimization. Technical Report, University of Valencia, Spain (2006).
[7]
Gibbs, N., Poole, W., Stockmeyer, P.: An algorithm for reducing the bandwidth and profile of a sparse matrix. SIAM J. Numer. Anal. 13(2), 235-251 (1976).
[8]
Orenstein, J.: A comparison of spatial query processing techniques for native and parameter spaces. In: SIGMOD '90: Proceedings of the 1990 ACM SIGMOD international conference on Management of data, Atlantic City, New Jersey, United States, pp. 343-352. ACM Press, New York, NY, USA (1990).
[9]
Jagadish, H.V.: Linear clustering of objects with multiple attributes. In: SIGMOD '90: Proceedings of the 1990 ACM SIGMOD international conference on Management of data, pp. 332-342. ACM Press, New York, NY, USA (1990).
[10]
Ng, R.T., Han, J.: Clarans: A method for clustering objects for spatial data mining. IEEE Transactions on Knowledge and Data Engineering 14(5), 1003-1016 (2002).
[11]
Pruefer, H.: Neuer beweis eines satzes uber permutationen. Archiv fur Mathematik und Physik 27, 142-144 (1918).
[12]
Brecheisen, S., Kriegel, H.P., Kroger, P., Pfeifle, M.: Visually mining through cluster hierarchies. In: Jonker, W., Petkovic, M. (eds.) SDM 2004. LNCS, vol. 3178, pp. 400-412. Springer, Heidelberg (2004).
[13]
Ankerst, M., Breunig, M., Kriegel, H.-P., Sander, J.: Optics: ordering points to identify the clustering structure. In: SIGMOD '99: Proceedings of the 1999 ACM SIGMOD international conference on Management of data, pp. 49-60. ACM Press, New York, NY, USA (1999).

Cited By

View all
  • (2014)Road network compression techniques in spatiotemporal embedded systemsProceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming10.1145/2676552.2676645(33-36)Online publication date: 4-Nov-2014

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
SSTD'07: Proceedings of the 10th international conference on Advances in spatial and temporal databases
July 2007
478 pages
ISBN:9783540735397
  • Editors:
  • Dimitris Papadias,
  • Donghui Zhang,
  • George Kollios

Sponsors

  • ESRI
  • Oracle Spatial
  • Microsoft Research: Microsoft Research

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 16 July 2007

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2014)Road network compression techniques in spatiotemporal embedded systemsProceedings of the 5th ACM SIGSPATIAL International Workshop on GeoStreaming10.1145/2676552.2676645(33-36)Online publication date: 4-Nov-2014

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media