[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1783574.1783659guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Comparison of BPL and RBF network in intrusion detection system

Published: 26 May 2003 Publication History

Abstract

In this paper, we present the performance comparison results of the backpropagation learning (BPL) algorithm in a multilayer perceptron (MLP) neural network and the radial basis functions (RBF) network for intrusion detection. The results show that RBF network improves the performance of intrusion detection systems (IDSs) in anomaly detection with a high detection rate and a low false positive rate. RBF network requires less training time and can be optimized to balance the detection and the false positive rates.

References

[1]
Jones, A.K., Sielken, R.S.: Computer system intrusion detection: A survey. Technical report, University of Virginia Computer Science Department (1999).
[2]
Cannady, J.: Next generation intrusion detection: Autonomous reinforcement learning of network attacks. In: Proceedings of the 23rd National Information Systems Security Conference (NISSC 2000). (2000).
[3]
Cannady, J.: Artificial neural networks for misuse detection. In: Proceedings of the 1998 National Information Systems Security Conference (NISSC'98) October 5-8 1998. Arlington, VA. (1998) 443-456.
[4]
Ryan, J., Lin, M.J., Miikkulainen, R.: Intrusion detection with neural networks. In Jordan, M.I., Kearns, M.J., Solla, S.A., eds.: Advances in Neural Information Processing Systems. Volume 10., The MIT Press (1998).
[5]
Ghosh, A., Wanken, J., Charron, F.: Detecting anomalous and unknown intrusions against programs. In: Proceedings of the 1998 Annual Computer Security Applications Conference (ACSAC'98), December 1998., Los Alamitos, CA, USA : IEEE Comput. Soc, 1998 (1998) 259-267.
[6]
Fan, W., Miller, M., Stolfo, S., Lee, W., Chan, P.: Using artificial anomalies to detect unknown and known network intrusions. In: IEEE Intl. Conf. Data Mining. (2001).
[7]
Stolfo, S., Fan, W., Lee, W., Prodromidis, A., Chan, P.: Cost-based modeling for fraud and instrusion detection: Results from the jam project. In: DARPA Information Survivability Conference and Exposition. Volume II., IEEE Computer Press (2000) 130-144.

Cited By

View all
  • (2016)Modified parallel random forest for intrusion detection systemsThe Journal of Supercomputing10.1007/s11227-016-1727-672:6(2235-2258)Online publication date: 1-Jun-2016
  • (2012)HTTP botnet detection using adaptive learning rate multilayer feed-forward neural networkProceedings of the 6th IFIP WG 11.2 international conference on Information Security Theory and Practice: security, privacy and trust in computing systems and ambient intelligent ecosystems10.1007/978-3-642-30955-7_5(38-48)Online publication date: 20-Jun-2012
  • (2010)ReviewApplied Soft Computing10.1016/j.asoc.2009.06.01910:1(1-35)Online publication date: 1-Jan-2010

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
RSFDGrC'03: Proceedings of the 9th international conference on Rough sets, fuzzy sets, data mining, and granular computing
May 2003
740 pages
ISBN:3540140409
  • Editors:
  • Guoyin Wang,
  • Qing Liu,
  • Yiyu Yao,
  • Andrzej Skowron

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 26 May 2003

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 16 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2016)Modified parallel random forest for intrusion detection systemsThe Journal of Supercomputing10.1007/s11227-016-1727-672:6(2235-2258)Online publication date: 1-Jun-2016
  • (2012)HTTP botnet detection using adaptive learning rate multilayer feed-forward neural networkProceedings of the 6th IFIP WG 11.2 international conference on Information Security Theory and Practice: security, privacy and trust in computing systems and ambient intelligent ecosystems10.1007/978-3-642-30955-7_5(38-48)Online publication date: 20-Jun-2012
  • (2010)ReviewApplied Soft Computing10.1016/j.asoc.2009.06.01910:1(1-35)Online publication date: 1-Jan-2010

View Options

View options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media